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Abstract—Data movement in high-performance computing sys-
tems accelerated by graphics processing units (GPUs) remains a
challenging problem. Data communication in popular parallel
programming models, such as the Message Passing Interface
(MPI), is currently limited to the data stored in the CPU memory
space. Auxiliary memory systems, such as GPU memory, are not
integrated into such data movement frameworks, thus providing
applications with no direct mechanism to perform end-to-end
data movement. We introduce MPI-ACC, an integrated and
extensible framework that allows end-to-end data movement
in accelerator-based systems. MPI-ACC provides productivity
and performance benefits by integrating support for auxiliary
memory spaces into MPI. MPI-ACC’s runtime system enables
several key optimizations, including pipelining of data transfers
and balancing of communication based on accelerator and node
architecture. We demonstrate the extensible design of MPI-
ACC by using the popular CUDA and OpenCL accelerator
programming interfaces. We examine the impact of MPI-ACC
on communication performance and evaluate application-level
benefits on a large-scale epidemiology simulation.
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I. INTRODUCTION

Graphics processing units (GPUs) have gained popularity
as general-purpose computation accelerators and are now fre-
quently integrated into high-performance computing systems.
The widespread adoption of GPU commuting has been due in
part to an amalgamation of performance, power, and energy
efficiency. In fact, three of the top five fastest supercomputers
in the world, according to the November 2011 Top500 list,
use GPUs [1].

Despite the growing prominence of accelerators in HPC,
data movement on systems with GPU accelerators remains a
significant problem. Hybrid programming with the Message
Passing Interface (MPI) [2] and the Compute Unified De-
vice Architecture (CUDA) [3] or Open Computing Language
(OpenCL) [4] is the dominant means of utilizing GPU clusters;
however, data movement between processes is currently lim-
ited to data residing in the host memory. The ability to interact
with auxiliary memory systems, such as GPU memory, has not
been integrated into such data movement frameworks, thus
providing applications with no direct mechanism to perform
end-to-end data movement. Currently, transmission of data
from accelerator memory must be done by explicitly copying
data to host memory before performing any communication
operations. This process impacts productivity and can lead to
a severe loss in performance. Significant programmer effort

would be required to recover this performance through vendor-
and system-specific optimizations, including GPU-Direct [5]
and node and I/O topology awareness.

We introduce MPI-ACC, an integrated and extensible frame-
work that provides end-to-end data movement in accelerator-
connected systems. MPI-ACC offers a significant improvement
in productivity by providing a unified programming inter-
face that can allow end-to-end data movement irrespective
of whether data resides in host or accelerator memory. In
addition, MPI-ACC allows applications to easily and portably
leverage vendor- and platform-specific capabilities in order to
optimize data movement performance. Our specific contribu-
tions in this paper are as follows.

• We provide an extensible interface for integrating auxil-
iary memory systems (e.g., GPU memory) with MPI. The
interface retains all of MPI’s existing functionality, while
providing transparent communication on buffers residing
in GPU and host memories. The interface is carefully
designed to be interoperable with different accelerator
interfaces—including CUDA and OpenCL—without re-
lying on interface-specific features such as unified virtual
addressing (UVA), which is available only in CUDA.

• We develop an optimized runtime system that can per-
form efficient data movement across host and accelera-
tor memories. The MPI-ACC runtime system performs
pipelined data movement across I/O links and the system
interconnect; leverages vendor- and platform-specific in-
formation such as PCIe and NUMA affinity; and caches
accelerator metadata. Results indicate that MPI-ACC can
provide up to 29% improvement in two-sided GPU-to-
GPU communication latency.

• We demonstrate the utility of MPI-ACC using a large-
scale epidemiology simulation parallelized for GPU clus-
ters [6], which achieves a 20.25% reduction in the com-
munication overhead. In addition to the expected speedup
from the integrated and optimized data movement, MPI-
ACC enables several memory access improvements for
this application, resulting in an 11.1% improvement to
the overall simulation execution time.

This paper is organized as follows. In Section II we provide
an overview of the current state of practice for programming
GPU-accelerated systems and describe MPI-ACC’s impact on
programmability. In Section III we present the MPI-ACC



optimized runtime system, and in Section IV we describe its
application to a large-scale epidemiology simulation. In Sec-
tion V we evaluate the communication and application-level
performance of MPI-ACC. In Section VI we present related
work, and in Section VII we summarize our conclusions.

II. PROGRAMMING ACCELERATOR-BASED SYSTEMS

The most commonly used compute accelerators today are
GPUs, which are connected to host processor and memory
through the PCIe interconnect. These devices contain sepa-
rate, high-throughput memory subsystems; and data must be
explicitly moved between GPU and host memories by using
special library DMA transfer operations. Some GPU libraries
provide direct access to host memory, but such mechanisms
still translate to implicit DMA transfers.

A. GPU Programming Models: CUDA and OpenCL

CUDA [3] and OpenCL [4] are the most commonly used
parallel programming models for GPU computing. CUDA is
a popular, proprietary GPU programming environment devel-
oped by NVIDIA; and OpenCL is an open standard for pro-
gramming a variety of accelerator platforms, including GPUs,
FPGAs, many-core processors, and conventional multicore
CPUs. Both CUDA and OpenCL provide explicit library calls
to perform DMA transfers from the host to device (H-D),
device to host (D-H), device to device (D-D), and optionally
host to host (H-H). In both CUDA and OpenCL, DMA
transfers involving pinned host memory provide significantly
higher performance than using pageable memory.

Despite their similarities, however, CUDA and OpenCL
differ significantly in how accelerator memory is used. In
OpenCL, device memory allocation requires a valid context
object. All communication to this device memory allocation
must also be performed by using the same context object.
Thus, a device buffer in OpenCL has little meaning without
information about the associated context. In contrast, context
management is implicit in CUDA if the runtime library is
used. CUDA data and corresponding cudaStream_t objects
are explicitly associated with each other or implicitly use the
default stream for data transfers. Furthermore, new versions of
CUDA (v4.0 or later) also support unified virtual addressing
(UVA), where the host memory and all the device memory
regions (of compute capability 2.0 or higher) can all be ad-
dressed in a single address space. At runtime, the programmer
can query whether a given pointer refers to host or device
memory via the cuPointerGetAttribute function call.
This feature is currently CUDA specific; and other accelerator
models, such as OpenCL, do not support UVA.

B. MPI+GPU Hybrid Programming Models

Current MPI applications that utilize accelerators must per-
form data movement in two phases. MPI is used for internode
communication of data residing in main memory, and CUDA
or OpenCL is used within the node to transfer data between
the CPU and GPU memories. In the simple example shown
in Figure 1, the additional host_buf buffer is to facilitate

1 double *dev_buf, *host_buf;
2 cudaMalloc(&dev_buf, size);
3 cudaMallocHost(&host_buf, size);
4 if (my_rank == sender) { /* sender */
5 computation_on_GPU(dev_buf);
6 cudaMemcpy(host_buf, dev_buf, size, ...);
7 MPI_Send(host_buf, size, ...);
8 } else { /* receiver */
9 MPI_Recv(host_buf, size, ...);

10 cudaMemcpy(dev_buf, host_buf, size, ...);
11 computation_on_GPU(dev_buf);
12 }

Fig. 1. Hybrid MPI+CUDA program with manual data
movement. For MPI+OpenCL, clEnqueueReadBuffer and
clEnqueueWriteBuffer would be used in place of cudaMemcpy.

MPI communication of data stored in device memory. One
can easily see that as the number of accelerators—and hence
distinct memory regions per node—increases, manual data
movement poses significant productivity challenges.

In addition to productivity challenges, users who need high
performance are faced with the complexity of leveraging
a multitude of platform-specific optimizations that continue
to evolve with the underlying technology. Manual blocking
transfers between host and device serialize transfers, resulting
in underutilization of the accelerator (PCIe) and network
interconnects. Ideally, data movement between the GPU and
CPU should be pipelined to fully utilize independent PCIe
and network links; however, adding this level of complexity
to already complex applications is infeasible. In addition, con-
struction of such a sophisticated data movement scheme above
the MPI runtime system incurs repeated protocol overheads
and eliminates opportunities for low-level optimizations.

Integrated support for accelerator memory is therefore a
critical feature for improving both the programmability and the
performance of MPI programs that use accelerators. Several
investigations have begun in this area [7], [8]; however, key
challenges remain unsolved, namely, reducing overheads and
integrating support for multiple accelerator models within ex-
isting MPI. The MVAPICH2-GPU project provides a standard-
conforming integrated interface for MPI+CUDA hybrid pro-
gramming [7], [9]; however, this system relies heavily on
CUDA-specific features, such as UVA. Reliance on UVA
introduces a new overhead to all MPI operations—regardless
of whether buffers reside in GPU memory—because MPI
must inspect the location of every buffer at runtime using
CUDA’s cuPointerGetAttribute function. Depending
on the result of this query, different code paths will be
executed to handle buffers residing in GPU or host memory.
This query is expensive relative to extremely low-latency
communication times and can add significant overhead to host-
to-host communication operations. In Figure 2 we measure the
impact of this query on the latency of intranode, CPU-to-CPU,
communication using MVAPICH v1.8 on the experimental
platform described in Section V.
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Fig. 2. Overhead of runtime checks incurred by intranode CPU-CPU
communication operations. The slowdown due to automatic detection (via
cuPointerGetAttribute) is 23% to 235% depending on the message
size, while the slowdown for the datatype attribute check is at most only 3%.
The explicit parameter check performs identically to the basic MPI version.

C. Extending MPI with Accelerator Awareness

This paper presents MPI-ACC, the first interface that in-
tegrates CUDA, OpenCL, and other models within an MPI-
compliant interface while significantly reducing GPU-GPU
and CPU-CPU communication overheads. Specifically, we
extend MPICH2 [10], an open-source high-performance im-
plementation of the MPI Standard.

In an MPI communication call, the user passes a void
pointer that indicates the location of the data on which the user
wishes to operate. To the MPI library, a pointer to host memory
is indistinguishable from a pointer to GPU memory. The MPI
implementation needs a mechanism to determine whether the
given pointer can be dereferenced directly or whether data
must be explicitly copied from the device by invoking GPU
library functions. Moreover, memory is referenced differently
in different GPU programming models. For example, CUDA
memory buffers are void pointers, but they cannot be deref-
erenced by the host unless UVA is enabled. On the other hand,
OpenCL memory buffers are represented as opaque cl_mem
handles that internally translate to the physical device memory
location but cannot be dereferenced by the host unless the
buffers is mapped into the host’s address space or explicitly
copied to the host. Given these constraints, several extensions
to the MPI interface are possible to enable MPI to correctly
identify host memory and device memory pointers.

1) Automatic Detection: One approach to allow MPI to
deal with accelerator buffers is to leverage the UVA feature
of CUDA to automatically detect device buffers. This method
requires no modifications to the MPI interface. As shown in
Figure 2, however, the penalty for runtime checking can be
significant and is incurred by all operations, including those
that require no GPU data movement at all. In addition, this
method currently works only with CUDA v4.0 or later and
with NVIDIA devices with Compute Capability 2.0 or higher.
This is not an extensible approach for other accelerator models
such as OpenCL that do not map GPU buffers into the host

virtual address space.
2) Explicit Parameters: A second approach is to define

new MPI communication functions that include an additional
parameter for each buffer, thus allowing the user to specify
the buffer type. This method uses static compile-time binding
to eliminate runtime penalties. A significant drawback to this
design is that it requires a new binding to be created for almost
every MPI function.

3) MPI Datatype Attributes: A third approach is to
use datatype attributes. MPI datatypes are used to spec-
ify the type and layout of buffers passed to the MPI
library. The MPI standard defines an interface for at-
taching metadata to MPI datatypes through datatype
attributes. These attributes can be used to indicate
buffer type and any other information to the MPI li-
brary. For convenience, accelerator variants of the built-in
datatypes can be defined (e.g., MPIACC_BUF_TYPE_CUDA
or MPIACC_BUF_TYPE_OPENCL). This approach introduces
a lightweight runtime attribute check to each MPI operation,
but the overhead is negligible, as shown in Figure 2. Moreover,
this approach is the most extensible and maintains compati-
bility with the MPI Standard.

In practice, the second and third approaches perform iden-
tically (see Figure 2). It is a matter of user preference which
type of is chosen.

III. MPI-ACC: DESIGN AND OPTIMIZATIONS

In this section, we introduce the design and optimizations
of MPI-ACC. Once MPI-ACC has identified a device buffer,
it leverages the PCIe and network link parallelism in order to
optimize the data transfer via pipelining. Pipelined data trans-
fer parameters are dynamically selected based on NUMA and
PCIe affinity to further improve communication performance.

A. Pipeline Design

We hide the PCIe latency between the CPU and GPU
by dividing the data into smaller chunks and performing
pipelined data transfers between the GPU, the CPU, and the
network. To orchestrate the pipelined data movement, we
create a temporary pool of host-side buffers that are registered
with the GPU driver (CUDA or OpenCL) for faster DMA
transfers. The buffer pool is created at MPI_Init time and
destroyed during MPI_Finalize. The system administrator
can choose to enable CUDA and/or OpenCL when configuring
the MPICH installation. Depending on the choice of the
GPU library, the buffer pool is created by calling either
cudaMallocHost for CUDA or clCreateBuffer (with
the CL_MEM_ALLOC_HOST_PTR flag) for OpenCL.

For every new GPU data transfer, we request the buffer pool
manager for some predetermined number of memory packets
from the buffer pool for pipelining. We relinquish the packets
back to the buffer pool once the data transfer is complete. This
method provides fairness to the utilization of the buffer pool
if there are multiple outstanding communication requests. But,
how many packets should be requested, and what should the
size of each packet be? Perfect pipeline efficiency is achieved



if the CPU-GPU channel and the internode CPU-CPU network
channel are both operating at the same bandwidth. At this
ideal data transfer rate, only two packets are needed to do
pipelining by double buffering: one channel receives the GPU
packet to the host while the other sends the previous GPU
packet over the network. We use a corresponding number
of CUDA streams and OpenCL command queues to perform
asynchronous packet transfer between the CPU and GPU.

To calculate the ideal pipeline packet size, we first individ-
ually measure the network and PCIe bandwidths at different
data sizes (Figure 3), then choose the packet size at the
intersection point of the above channel rates, 64 KB for our
experimental cluster (section V). If the performance at the
intersection point is still latency bound for both data channels
(network and PCIe), then we pick the pipeline packet size to
be the size of the smallest packet at which the slower data
channel reaches peak bandwidth. The end-to-end data transfer
will then also work at the net peak bandwidth of the slower
data channel.

The basic pipeline loop for a “send” operation is as follows
(“receive” works the same way, but the direction of the
operations is reversed). Before sending a packet over the
network, we check for the completion of the previous GPU-
to-CPU transfer by calling cudaStreamSynchronize or
a loop of cudaStreamQuery for CUDA (or the corre-
sponding OpenCL calls). However, we find that the GPU
synchronization/query calls on already completed CPU-GPU
copies cause a significant overhead in our experimental cluster,
which hurts the effective network bandwidth and forces us
to choose a different pipeline packet size. For example, we
measure the cost of stream query/synchronization operations
as approximately 20 µs, even though the data transfer has been
completed. Moreover, this overhead occurs every time a packet
is sent over the network, as shown in Figure 3 by the “Effective
Network Bandwidth” line. We observe that the impact of the
synchronization overhead is huge for smaller packet sizes but
becomes negligible for larger packet sizes (4 MB). Also, we
find no overlap between the PCIe bandwidth and the effective
network bandwidth rates, and the PCIe is always faster for all
packet sizes. Thus, we pick the smallest packet size that can
achieve the peak effective network bandwidth (in our case, this
is 1 MB) as the pipeline transfer size for MPI-ACC. Smaller
packet sizes (<1 MB) cause the effective network bandwidth
to be latency bound and are thus not chosen as the pipeline
parameters.

We emphasize that we support message transfers of all data
sizes in MPI-ACC in order to enhance programmer produc-
tivity. In the implementation, however, we use the pipelining
approach to transfer large messages—namely, messages that
are at least as large as the chosen packet size—and fall
back to the nonpipelined approach when transferring smaller
messages.

B. Dynamic Choice of Pipeline Parameters

The effective data transfer bandwidth out of a node in
current heterogeneous clusters may vary significantly. For
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Fig. 3. Choosing the pipeline parameters: network – InfiniBand, transfer
protocol – R3.

example, the PCIe interfaces at the communication end points
may be different (×16 vs. ×4), or the GPUs can be of differ-
ent generations with different DMA capabilities. A common
scenario of heterogeneous performance involves multisocket,
multicore CPU architectures that may have multiple memory
and PCIe controllers (GPU or IB) per socket, where the access
latencies vary significantly depending on the affinity of the
executing CPU core and the target memory or PCIe controller.
The sockets within a die are connected via quick links, such as
QPI (Intel) and HT (AMD), and the additional intersocket data
transfers hurt performance. For example, if the target memory
module controller and the GPU PCIe controller are on different
sockets, the GPU-CPU data transfer bandwidth can slow by
as much as 2.5× (Figure 4). Similarly, the InfiniBand network
bandwidth can slow by 27% because of the varying network
controller affinity.

Because of a combination of these scenarios, the effective
bandwidth can be different for the source and the destination.
Since the communication performance at each communication
stage can change dynamically and significantly, we choose the
pipeline parameters (packet size) also dynamically at runtime
for both the source and destination processes. We inspect
a series of benchmark results; learn the dynamic system
characteristics, such as the CPU socket binding; and then
apply architecture-aware heuristics to choose the ideal transfer
parameters for each communication request, all at runtime.

The sender sends a ready-to-send (RTS) message at the
beginning of every MPI communication. The receiver sends
a corresponding clear-to-send (CTS) message back, and then
the sender begins to transfer the actual payload data. Thus,
the sender encapsulates the local pipeline parameters within
the RTS message and sends it across the network. The receiver
inspects the sender’s parameters and also the receiver’s system
characteristics (e.g., socket binding) and chooses the best
pipeline parameters for the current communication transaction,
based on our benchmark results and corresponding heuristics.
The receiver then sends the CTS message back to the sender
along with its chosen pipeline parameters. The sender uses the
received pipeline parameters to perform data movement from
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Fig. 4. NUMA and PCIe affinity issues affecting the effective bandwidth
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pipeline parameters depending on the runtime system characteristics at the
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the GPU, as before. In this approach, the two participating
processes both first pick an initial pipeline configuration,
then coordinate via RTS/CTS messages to converge on a
single packet size depending on the effective bandwidth of
the participating processes.

C. OpenCL Issues and Optimizations

In OpenCL, device data is encapsulated as a cl_mem object
that is created by using a valid cl_context object. To
transfer the data to/from the host, the programmer needs valid
cl_device_id and cl_command_queue objects, which
are all created bby using the same context as the device data.
At a minimum, the MPI interface for OpenCL communi-
cation requires the target OpenCL memory object, context,
and device ID objects as parameters. The command queue
parameter is optional and can be created by using the above
parameters. Within the MPICH implementation, we either use
the user’s external command queue or create several internal
command queues to enable pipelined communication between
the device and the host. Within MPICH, we also create a
temporary OpenCL buffer pool of pinned host-side memory
for pipelining. However, OpenCL requires that the internal
command queues and the pipeline buffers also be created by
using the same context as the device data. Also, in theory, the
OpenCL context could change for every MPI communication
call, and so the internal OpenCL objects cannot be created
at MPI_Init time. Instead, they must be created at the
beginning of every MPI call and destroyed at the end of it.

The repeated initialization of these temporary OpenCL
objects severely hurts performance because they are expensive
operations. Moreover, we believe that in practice the OpenCL
programmers are unlikely to use multiple contexts within the
same program. Therefore, we cache the command queue and
pipeline buffer objects after the first communication call and
reuse them if the same OpenCL context and device ID are used
for the subsequent calls. If any future call involves a different
context or device ID, we clear and replace our cache with
the most recently used OpenCL objects. In this way, we can

amortize the high OpenCL initialization cost across multiple
calls and significantly improve performance. We use a caching
window of one, which is considered sufficient in practice.

IV. APPLICATION OF MPI-ACC TO AN EPIDEMIOLOGY
SIMULATION APPLICATION

GPU-EpiSimdemics is a large-scale application that utilizes
GPUs across multiple nodes to simulate the joint evolution of
disease dynamics, human behavior, and social networks as an
epidemic progresses [6]. We have accelerated the application
further by using MPI-ACC instead of explicit internode GPU-
GPU data movement. We discuss the relevant data structure
and communication operations in GPU-EpiSimdemics and
compare the performance of MPI-ACC with hand-tuned ap-
proaches to optimizing GPU-GPU communication. In addition
to expected improvement in communication performance (pre-
sented in Section V-C), we observe significant improvement
in the application’s execution time because MPI-ACC forces
some memory reads and writes to be moved away from the
slower host memory to the faster device memory.

A. GPU-EpiSimdemics Algorithm

EpiSimdemics [11], [12] is an interaction-based, high-
performance-computing-oriented simulation for studying
large-scale epidemics. The computation structure of this
implementation consists of three main components: persons,
locations, and message brokers. Given a parallel system
with N cores, or processing elements (PEs), people and
locations are first partitioned in a round-robin fashion into
N groups denoted by P1, P2, . . . , PN and L1, L2, . . . , LN ,
respectively. Each PE then executes all the remaining phases
of the EpiSimdemics algorithm on its local data set (Pi, Li).
Each PE also creates a copy of the message broker, denoted
by MB1,MB2, . . . ,MBN .

Next, a set of visit messages is computed for each person Pi

for the current simulation day (or iteration). These messages
are then sent to each location (which may be on a different PE)
via the local message broker. Each location, upon receiving
the visit messages, computes the probability of spread of
infections for each individual at that location. Outcomes of
these computations (infections) are then sent back to the
“home” PEs of each person via the local message broker.
The infection messages for each person on a PE are merged
and processed, and the resulting health state of each infected
person is updated. Thus, the simulation is composed of two
major phases: computeVisits and computeInteractions. The
messages that are computed as the outputs of one phase
are communicated with the appropriate PEs as inputs to the
next phase of the simulation. All the PEs in the system are
synchronized after each phase in the simulation. These steps
are executed for the required number of simulation days (or
iterations), and the resulting social network dynamics are
analyzed in detail.

GPU-EpiSimdemics is implemented by using MPI; each PE
in the simulation corresponds to a separate MPI process. The
computeInteractions phase of GPU-EpiSimdemics is offloaded



to be executed on the GPU while the remaining computations
are performed on the CPU [6]. The computeInteractions phase
of the simulation, by itself, is isolated in that it does not require
any interprocess communication.

B. Optimizing Internode GPU-GPU Data Movement Using
MPI-ACC

The visit messages that are computed as the outputs of
the computeVisits phase become the inputs to the computeIn-
teractions phase of GPU-EpiSimdemics. In the naı̈ve data
movement approach, the visit messages are first transferred
to the remote CPU memory, and then the remote node copies
them across the PCIe bus to the local GPU memory. If there
are N PEs in the system, then each PE receives up to N visit
message fragments. All-to-all or scatter/gather transfers of this
data are not feasible because the number of visit messages is
not known beforehand. Thus, fixed-size, persistent buffers are
repeatedly reused, potentially resulting in gaps or fragments
if fewer than N messages are received. Once all messages
are received, they are packed into a single, contiguous visit
buffer before the next phase of the simulation. The manual
data movement+packing can be done in two ways: (1) pack the
data completely on the CPU before copying to GPU memory
(Figure 5a), or (2) pack the data simultaneously during the
CPU-GPU transfer (Figure 5b).

As part of the communication optimization process, we first
replace the asynchronous MPI and cudaMemcpy calls in
the receiver logic with the unified MPI-ACC calls; in other
words, the visit messages are directly received into the remote
GPU memory via MPI-ACC’s integrated interface and internal
pipeline mechanism (Figure 5c). The use of MPI-ACC causes
the following changes to the simulation’s execution logic.
First, the receive buffers of the visit message fragments are
created and initialized in the GPU memory, and not in the
CPU memory. Second, the received visit message fragments
are packed in the GPU itself. Third, the explicit transfer
of the contiguous visit buffer from the host to the device
is completely avoided. The PCIe bottleneck is significantly
alleviated as a result ot the pipelining mechanism within MPI-
ACC. The computeInteractions phase is then executed on the
GPU following the interphase barrier, as before.

V. EVALUATION

All our experiments are run on a four-node GPU clus-
ter, where each node has a dual-socket oct-core AMD
Opteron 6134 (Magny-Cours family) processor. Each node
is also attached to two NVIDIA Tesla C2050 GPUs, which
belong to the GF100 Fermi architecture family (compute
capability 2.0). We use one CPU core and one GPU device
per node for all our experiments. For our benchmark tests, we
use two of the four nodes to perform the internode, inter-
GPU latency and bandwidth experiments. Each CPU node
has 32 GB of main memory, and each GPU has 3 GB of
device memory. We use the CUDA v4.0 toolkit with the
driver v285.05.23 as the GPU management software. MPICH
is compiled with GCC v4.1.2 and on the Linux kernel v2.6.35.
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(a) Manual MPI+CUDA optimizations – basic scheme. The visit
messages are first packed on the host, then copied to the device.
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(c) MPI-ACC optimizations. The visit messages are received
directly in the device and then packed.

Fig. 5. Applying MPI-ACC to GPU-EpiSimdemics.

A. Impact of Pipelined Data Transfer

In Figure 6 we compare the performance of MPI-ACC with
the manual blocking and manual pipelined implementations.
Our internode GPU-to-GPU latency tests show that MPI-
ACC is better than the manual blocking approach by up to
29% and is up to 14.6% better than the manual pipelined
implementation, especially for larger data transfers. The man-
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ual pipelined implementation performs poorly because of the
repeated handshake messages (RTS and CTS) that are sent
back and forth across the network before the data transfer. We
also show that the performance of MPI-ACC is worse than
the manual approaches for the messages that are smaller than
the pipeline packet. The cause is the additional overhead of
maintaining the data structures and bookkeeping logic required
for pipelining. In practice, however, we use the MPI-ACC
pipelining logic only to transfer data that is larger than the
packet size, and we fall back to the default blocking approach
for smaller data sizes.

B. Impact of OpenCL Object Caching

Figure 7 shows that the OpenCL caching optimization
improves performance from 8% for larger data sizes (64 MB)
to 72.6% for smaller data sizes (1 MB). Even where the pro-
grammers provide their custom command queue, the pipeline
buffers still have to be created for every MPI communication
call, and so caching improves performance, as seen in the
difference between the “initialization overhead of pipeline
buffers only” and “with caching” data points.
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Fig. 8. MPI-ACC applied to GPU-EpiSimdemics.

MPI + CUDA 
(Basic) 

MPI + CUDA 
(Advanced) 

MPI-ACC 

D-D Copy (Packing) 0 0 0.003 

GPU Receive Buffer Init 0 0 0.024 

H-D Copy  0.382 0.282 0 

H-H Copy (Packing) 2.570 0 0 

CPU Receive Buffer Init 2.627 2.537 0 

0 

1 

2 

3 

4 

5 

6 

Ti
m

e
 (

se
co

n
d

s)
 

Fig. 9. Analyzing the computeVisits phase of GPU-EpiSimdemics

C. Application Evaluation: GPU-EpiSimdemics

GPU-EpiSimdemics was run on a problem consisting of a
synthetic subpopulation from the state of Delaware (DE) with
247,876 persons, 204,995 locations, and an average of about
1.5 million visits being generated during every simulated day.
All results are based on running GPU-EpiSimdemics for 55
simulated days. This data set was chosen because it fits in
both the CPU and GPU memories on a single node and can
be used as the basis for other performance calculations.

Figure 8 shows the execution profiles of GPU-
EpiSimdemics before and after applying the MPI-ACC
optimizations. We can see that, upon applying MPI-ACC to
the simulation, the computeVisits phase has been accelerated
by 20.25% and the overall simulation by 11.1% when
compared with the basic data transfer scheme.

To understand the reason behind the performance benefits,
we further profile the computeVisits phase and show the results
in Figure 9. In particular, we isolate and measure the effect of
the changes due to MPI-ACC—namely, changes in the buffer
creation and initialization, buffer packing, and CPU-GPU data
movement. We see that the time taken for buffer creation and
packing on the GPU is two orders of magnitude faster than on
the CPU. We attribute this result to the much faster GDDR5
RAM on the GPU device.



Without MPI-ACC, the experienced application programmer
can certainly implement the pipelined data transfers above the
MPI layer. However, this approach always leads to poor per-
formance because of the repeated overhead of the MPI hand-
shaking message exchanges. Also, the programmer is always
forced to create and manage all the communication buffers
on the slower CPU memory, a costly operation. Moreover, in
our application, we see that the time taken for the blocking
CPU-GPU buffer copy in the manual approaches (MPI+CUDA
– basic and advanced schemes) is only about 1.3% of the
computeVisit’s execution time, and therefore pipelining alone
does not provide overall improvement. MPI-ACC forces the
receive-buffer creation and packing routines to be moved
to and executed on the faster GPU device memory, thus
improving overall performance.

VI. RELATED WORK

MVAPICH [9] is another implementation of MPI based on
MPICH and is optimized for RDMA networks such as Infini-
Band. MVAPICH2-GPU, which is the latest release of MVA-
PICH (v1.8), includes support for transferring CUDA memory
regions across the network [7] (point-to-point, collective and
one-sided communications). In order to use this, however, each
participating system should have an NVIDIA GPU of compute
capability 2.0 or higher and CUDA v4.0 or higher, because
MVAPICH2-GPU leverages the UVA feature of CUDA [3].
On the other hand, MPI-ACC takes a more portable approach:
we support data transfers among CUDA [3], OpenCL [4],
and CPU memory regions; and our design is independent
of library version or device family. By including OpenCL
support in MPI-ACC, we automatically enable data movement
between a variety of devices, including GPUs from NVIDIA
and AMD, CPUs from IBM and Intel, AMD Fusion, and
IBM’s Cell Broadband Engine. Also, we make no assumptions
about the availability of key hardware features (e.g., UVA) in
our interface design, thus making MPI-ACC a truly generic
framework for heterogeneous CPU-GPU systems.

CudaMPI [13] is a library that helps improve programmer
productivity when moving data between GPUs across the
network. It provides a wrapper interface around the existing
MPI and CUDA calls. Our contribution conforms to the MPI
Standard, and our implementation removes the overhead of
communication setup time, while maintaining productivity.

DCGN [14] is a novel programming environment that moves
away from the GPU-as-a-worker programming model. DCGN
assigns ranks to GPU threads in the system and allows
them to communicate among each other by using MPI-like
library calls. The actual control and data message transfers
are handled by the underlying runtime layer, which hides the
PCIe transfer details from the programmer. Our contribution
is orthogonal to DCGN’s in that we retain the original MPI
communication and execution model while hiding the details
of third-party CPU-GPU communication libraries from the end
user.

VII. CONCLUSION

In this paper, we introduced MPI-ACC, an integrated and
extensible framework that allows end-to-end data movement
in accelerator-connected systems. We implemented several op-
timizations in MPI-ACC, such as pipelining, dynamic adjust-
ment of pipeline parameters based on PCIe affinity and NUMA
effects, and efficient management of CUDA and OpenCL
resource objects. We demonstrated 29% improvement in per-
formance in GPU-to-GPU data communication compared with
the manual blocking approach. We also applied MPI-ACC to
GPU-EpiSimdemics, a large-scale epidemiology simulation,
and achieved a performance improvement of 11.1%, where
the communication was enhanced by 20.25%.
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