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Abstract—Next-generation, high-throughput sequencers are
now capable of producing hundreds of billions of short
sequences (reads) in a single day. The task of accurately
mapping the reads back to a reference genome is of particular
importance because it is used in several other biological
applications, e.g., genome re-sequencing, DNA methylation, and
ChiP sequencing. On a personal computer (PC), the computa-
tionally intensive short-read mapping task currently requires
several hours to execute while working on very large sets of
reads and genomes. Accelerating this task requires parallel
computing. Among the current parallel computing platforms,
the graphics processing unit (GPU) provides massively parallel
computational prowess that holds the promise of accelerating
scientific applications at low cost.

In this paper, we propose GPU-RMAP, a massively par-
allel version of the RMAP short-read mapping tool that is
highly optimized for the NVIDIA family of GPUs. We then
evaluate GPU-RMAP by mapping millions of synthetic and
real reads of varying widths on the mosquito (Aedes aegypti)
and human genomes. We also discuss the effects of various
input parameters, such as read width, number of reads,
and chromosome size, on the performance of GPU-RMAP.
We then show that despite using the conventionally “slower”
but GPU-compatible binary search algorithm, GPU-RMAP
outperforms the sequential RMAP implementation, which uses
the “faster” hashing technique on a PC. Our data-parallel
GPU implementation results in impressive speedups of up to
14.5-times for the mapping kernel and up to 9.6-times for
the overall program execution time over the sequential RMAP
implementation on a traditional PC.

Keywords-short-read mapping; sequence analysis; graphics
processing unit (GPU); RMAP; CUDA.

I. INTRODUCTION

Next-generation high-throughput sequencing instruments,
like Illumina’s Solexa IG sequencer, Applied Biosystem’s
SOLiD system, and Roche’s (454) GS FLX Genome Ana-
lyzer, are capable of producing billions of short sequence
data (about 25-100 bases each) within a single day. In the
field of genomics, a very important problem is to map these
short sequences, or reads, to a reference genome. This highly
compute-intensive mapping phase forms an integral link
in the computational pipeline of several applications, such
as genome re-sequencing, DNA methylation, transcriptome
sequencing, and ChiP sequencing [1], [2]. Mapping billions
of reads to huge reference genomes, like the human genome
that has about 3-billion bases, may take several hours if

executed sequentially on a personal computer (PC). While
traditional local sequence alignment tools, e.g., BLAST [3]
and PatternHunter [4], can be used to map reads, they are
not optimized to align a large number of very short reads.
Many specialized tools have been developed to solve the
short-read mapping problem [2], [5]–[7], but the rate of
data analysis is much slower than the unprecedented rate
at which the sequence data is being generated. This has led
to the development of accelerated parallel versions of the
short-read mapping tools on a multitude of high-performance
computing platforms [1], [8], [9].

Today, gains in computational horsepower are no longer
driven by increases in clock speeds. Instead, the gains are
increasingly achieved through parallelism, both in traditional
multi-core architectures as well as the many-core archi-
tectures of the graphics processing unit (GPU). Amongst
the most prominent many-core architectures are the GPUs
from NVIDIA and AMD/ATI, which can support general-
purpose computation on the GPU (GPGPU). Thus, GPUs
have evolved from their traditional roots of graphics pipeline
models into programmable devices that are suited for accel-
erating scientific applications, such as sequence alignment
and fast N-body simulations [8], [10]–[12], at very afford-
able prices. Further speedups can be achieved by adding the
GPU to an existing personal computer (PC).

In this paper, we introduce and evaluate GPU-RMAP, a
massively parallel version of the RMAP short-read mapping
tool [2] that we have designed and optimized for the GPU
thread and memory architecture of NVIDIA Tesla via CUDA
programming platform [13]. In this design, each GPU thread
efficiently maps the given set of reads to a unique genome
segment and collectively returns all the chosen reads and the
mapped genome sites. Race conditions arise when multiple
GPU threads update the map results simultaneously, but we
explain how our multi-staged algorithm prevents this classic
problem from occurring. In addition, we show that despite
using the conventionally “slower” binary search method
at the core of the GPU mapping algorithm, GPU-RMAP
outperforms the sequential RMAP implementation, which
uses the “faster” hashing technique for mapping reads on
a PC. We also present further optimizations, where we
explicitly cache the repeatedly accessed data elements in
the faster on-chip memory of the GPU.
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We evaluate GPU-RMAP by performing a wide range
of experiments, followed by rigorous data analysis. We
map millions of real and artificially generated reads of
varying widths onto the mosquito (Aedes aegypti) and
human genomes. We then profile the GPU-RMAP code and
discuss the effects of the chosen optimization techniques
on the different phases of the RMAP algorithm. Next, we
present the effects of RMAP’s various input parameters (e.g.,
read width, number of reads, and chromosome size) on
the performance of GPU-RMAP. Finally, we show that all
the efficient design considerations of GPU-RMAP result in
impressive speedups of up to 14.5× for the mapping kernel
and up to 9.6× for the overall program execution time over
the sequential RMAP implementation on a traditional PC.

The rest of the paper is organized as follows: Section II
presents the related work. Section III describes the NVIDIA
Tesla C1060 architecture and the CUDA programming
model. Section IV introduces the sequential RMAP algo-
rithm. Techniques to accelerate RMAP on the GPU using
CUDA are described in Section V. Section VI compares and
analyzes the performance of the GPU-RMAP. Section VII
concludes the paper.

II. RELATED WORK

Recent parallel short-sequence mapping has been carried
out on 64-node clusters [1], where the authors have ana-
lyzed the difference in the performances between multiple
parallelization techniques, including partitioning the reads,
partitioning the genome, and partitioning both the reads and
the genome. While their performance results demonstrate
good scalability of their code, the hardware is expensive
and not largely available to the bioinformatics community.
Moreover, they have parallelized their own SOLiD algorithm
that performs short sequence mapping by using covering
designs. In contrast, we have improved the performance of
the RMAP algorithm, which claims to be more useful than
other short sequence-mapping tools because of its ability to
map paired-end reads and bisulfite-treated reads [2]. Also,
we have implemented GPU-RMAP on commodity hardware,
i.e., a desktop PC with a graphics card (containing a GPU),
thus providing a very inexpensive and massively parallel
computing platform for the short-read mapping problem.

MUMmerGPU v1.0 [8] and v2.0 [14] parallelize the
MUMmer short sequence-mapping program on the CUDA
programming platform and report total application speedups
of 3.5× and 13×, respectively, over a CPU implementa-
tion. MUMmer represents the target genome as a suffix
tree and maps the incoming input reads, while RMAP
uses a hash table of the reads to quickly match various
genome segments. The authors of MUMmer and RMAP
claim several advantages of one tool over another, and
clearly, both of these tools are very much relevant to the
bioinformatics community. To the best of our knowledge,

no other literature presents the parallelization of RMAP on
commodity graphics processors.

CloudBurst [9] is a parallel implementation of RMAP
on distributed memory architectures that uses Google’s
MapReduce [15] framework. This program achieves more
than 100× speedup by executing on a remote compute
cloud with 96 cores. As previously mentioned, our program
just uses a single commodity GPU for accelerating RMAP,
and therefore, we achieve a much better performance-cost
ratio. Moreover, CloudBurst parallelizes an older version of
RMAP, where the reads are partitioned into multiple seeds
corresponding to the number of allowed mismatches. We
have chosen to accelerate a newer version of RMAP, where
layered seeds are used for maximum search sensitivity, while
maintaining good execution times [16].

III. NVIDIA GPU ARCHITECTURE AND THE CUDA
PROGRAMMING MODEL

The NVIDIA Tesla C1060 GPU (or device) consists of a
set of 30 single-instruction, multiple-data (SIMD) streaming
multiprocessors (SMs), where each SM consists of eight
scalar processor (SP) cores running at 1.2 GHz with 16-
KB on-chip shared memory (cache), and a multi-threaded
instruction unit. The SMs on the GPU can simultaneously
access the device memory, which consists of 4 GB read-write
global memory, 64 KB of read-only constant memory, and
read-only texture memory. However, all the device memory
modules can be read or written to by the host processor. Each
SM has on-chip memory, which can be accessed by all the
SPs within the SM and will be one of the following four
types: a set of registers; 16 KB of ‘shared memory’, which
is a software-managed data cache; a read-only constant
memory cache; and a read-only texture memory cache. The
global memory space is not cached by the device.

CUDA (Compute Unified Device Architecture) [13] is
the parallel programming model and software environment
provided by NVIDIA to run applications on their GPUs. It
abstracts the architecture to parallel programmers via simple
extensions to the C programming language. CUDA follows
a code off-loading model, where compute-intensive portions
of applications that normally run on the host processor are
off-loaded onto the GPU device. The kernel is the portion
of the program that is compiled to the instruction set of the
device and then off-loaded to the device before execution.

IV. THE RMAP PACKAGE

The RMAP program accurately maps reads from next-
generation sequencing technology. Although RMAP was
originally designed for mapping Illumina reads, it can also
be used to map Roche/454 and ABI SOLiD reads [2]. The
typical inputs to the RMAP program are (1) a set of millions
of short reads and (2) the target genome or a file containing
the path to a set of target genomes (FASTA format). The
reads have to be quickly mapped onto different regions of
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the target genomes. The output of the program is a set of
mapped reads, the sites on the target genome at which each
of them is best mapped, and the strand (forward / reverse)
of the genome. RMAP also allows the end user to configure
some execution parameters, including the maximum read
width, number of mismatches, and number of non-unique
(ambiguous) reads. In addition, there are no limitations on
any of the parameters. Currently, the RMAP package (v2.02)
contains three mapping programs, where each program pre-
processes the set of reads and creates a hash structure, and
then scans the genome to find potential high-scoring maps
by doing a hash table lookup. Apart from the basic rmap
program, the RMAP package contains the rmappe and
the rmapbs programs for mapping ‘paired-end’ reads and
bisulfite-treated reads, respectively.

The reads for each of the above programs can be specified
in their entirety (FASTA format) or can be specified as a set
of quality scores for each position within the read. These
quality scores are derived from some probabilistic model,
which allots a certain confidence level for finding a particular
base-pair in the corresponding position of the read.

In this paper, we parallelize the basic rmap program and
choose the FASTA format as the input for the reads and
the genomes. We note that our design principles can also be
directly applied to the other programs in the RMAP package.

A. The Sequential Algorithm

The RMAP algorithm can be broadly thought of as a
methodology to match a set of patterns (reads) onto a
large text (genome). The algorithm first indexes the reads
by creating a hash table.1 Collisions in the hash table are
resolved by chaining, where the chain indicates the set of
reads that have resolved to the same hash key. Then, the
genome is scanned at every site to check for any match in the
hash table. If there is a match, then the genome segment is
scored against all the reads that correspond to the respective
hash table entry. If the score is within a certain threshold
(constrained by the number of allowed mismatches and non-
unique mappings), the read, along with the mapped genome
site and the genome strand (forward / reverse) are added to
the final map (i.e., results).

To make this process more efficient, RMAP v2.02 em-
ploys the concept of layered seed structures [16] for con-
structing the hash table. Seed structures specify sets of
locations in the reads that are required to match the genome
exactly at any site where the read can map. In other words,
the seeds can be considered to be bit masks that have to be
applied (i.e., bitwise AND’ed) to the reads before adding
them as keys to the hash table. The result of applying the
seed to the read will be a 64-bit unsigned integer, with

1Reads are indexed, and not the genome, probably because the genome
index structure would have been a few orders of magnitude larger than
that of the reads. The RMAP authors have also likely chosen to optimize
memory in the “memory vs. time” tradeoff.

the bases of the read corresponding to 1′s in the seed.
Multiple reads can therefore produce the same hash key,
and collisions in the hash table are resolved by chaining,
where the chain indicates the set of reads that have the same
bases at the positions determined by the seed structure. The
same seed (bit mask) must then be applied to all the sites
of the genome, when scanning them for matches in the hash
table. If we choose more seeds, then the sensitivity of the
algorithm will be higher, but too many seeds or a bad choice
of seed structures can potentially hurt the execution time of
the program. However, the seeds are designed to be more
accurate in RMAP, and therefore, there will be fewer full
comparisons while scanning the genome [16].

In summary, the execution of rmap can be broadly
characterized to consist of the following phases:

• Initialization – read all the input reads and genome data
from disk, process the command line parameters, ini-
tialize the seed structures and the final result structures.

• Hash table construction – apply the seed structure to
the set of reads before creating the hash table.

• Genome mapping – scan the genome and lookup the
hash table for matches, calculate the scores and choose
the highest scoring reads.

• Best maps reporting – collect and present the final
mapped reads and the respective mapped sites, chro-
mosome strands and the scores.

The hash table construction and genome mapping steps are
carried out for every seed in the seed structures. In this paper,
we accelerate the genome mapping step because it consumes
more than 98% of the total execution time, and hence, the
code section to be parallelized.

V. GPU-RMAP: DESIGN AND IMPLEMENTATION

In this section, we describe the techniques used to acceler-
ate the RMAP algorithm on the NVIDIA Tesla C1060 GPU
by using the CUDA programming platform. As discussed
in the previous section, we focus on parallelizing only the
genome mapping part of the algorithm because it is the most
computationally expensive portion of the program. Genome
mapping includes the following phases: (1) Scanning and
hash table lookup: The entire genome and the hash (lookup)
table for the reads are transferred from the CPU memory
to the device memory of the GPU. Next, all the segments
of the genome are inspected by the GPU threads and the
potential matches in the hash table are found; (2) Scoring:
The number of mismatches (score) between the genome
segment and the corresponding matched reads is computed
by the GPU threads; and (3) Selection: For every read, the
best set of mapped genome sites, the corresponding scores,
and the strand information are added to the final map result
structure on the GPU (filtered by a pre-determined score
threshold). The final map results are transferred back to the
CPU memory for further processing or reporting.
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A. High-Level Mapping of RMAP onto the GPU

Figure 1 depicts the high-level design of GPU-RMAP.
After the genome and the lookup table data is transferred
to the GPU’s device memory, the genome is partitioned into
several independent segments that marginally overlap each
other. These segments are then distributed for processing
among all the threads on the GPU so that each thread can
independently (i.e., in parallel) map the complete set of reads
onto a unique portion of the genome.

However, given that each thread independently processes
a unique portion of the genome, the set of reads is common
to all the GPU threads. Consequently, different threads may
map their genome segments to the same read at the same
time, and thus, may produce different ‘best’ scoring sites
for the same set of reads. The selection of the best-scoring
genome sites for each read will therefore depend on the order
in which the threads execute, thus leading to a classic race
condition, as shown in Figure 1. Moreover, CUDA does not
yet fully support global inter-thread communication [13],2

which could have potentially solved this problem.

Thread Synchronization / Re-assignment

Intermediate Map Results

Assign threads to Genome Assign threads to Genome

Race Condition Thread Synchronization / Re-assignment

Best Map ResultsBest Map Results

Assign threads to

Intermediate Map Results

Race Condition

Solution: Design of GPU-RMAPProblem

Figure 1. GPU-RMAP: High-Level Design.

To address the race condition, we divide the algorithm
into two stages, where the first stage performs the parallel
genome scanning and scoring and the second stage does the
selection. At the end of the first stage, each read entry has a
list of potential ’best map’ genome sites, which represent the
the intermediate map results. Next, we synchronize all the
threads, followed by re-distributing the intermediate results
among the GPU threads for the second stage, i.e. the final
selection phase, as shown on the right-hand side of Figure 1.
The thread “synchronization / re-assignment” step solves
the race condition problem because we have decoupled the
dependency of the final selection phase from the execution

2CUDA only supports a basic set of atomic operations, which we have
used in our design.

order of the GPU threads in the parallel genome scanning
and scoring phase.

Global thread synchronization can be implicitly imple-
mented in CUDA by launching a new CUDA kernel. So,
in GPU-RMAP, we launch two CUDA kernels, as shown in
Figure 2.

As shown in Figure 2a, Kernel 1 executes the scanning,
table lookup, and scoring phases. Each thread independently
chooses the set of reads that could be potentially mapped to
the genome segment that is assigned to the thread. It then
appends the score and mapped site information to the list of
potential best maps, corresponding to each chosen read. The
atomicAdd instruction, which is provided by the CUDA
SDK, allows each thread to calculate the next available index
of the list in a thread-safe manner, where the intermediate
scores and potential mapped genome sites of the respective
reads can be stored. Each read still needs to inspect its
intermediate list of potential best maps and make a final
selection of the best-mapped genome sites. The termination
of the first kernel acts as an implicit synchronization point
for all the GPU threads, and further processing can be safely
done by the second kernel without any race conditions.

Lookup the

corresponding Key

Genome

CPU

GPU

GPU Threads

Keys (Device Memory & Fast Cache)

Lookup Table

Transfer the Genome, 

Reads and Lookup Table 

to GPU’s Memory

Keys (Device Memory & Fast Cache)

Matched Reads Locations

Reads

Potential Best 

Maps

Score
Intermediate Map of the Reads

Store

(a) Kernel 1

GPU Threads

Reads

Select

Potential Best 

Maps

Intermediate Map of the Reads

GPU

CPU

Best Maps 

(Mapped  Genome 

ID, Site,

Score, and Strand)

Select

Final Map of the Reads

Transfer the Final Best

Maps to CPU’s Memory

Store

(b) Kernel 2

Figure 2. GPU-RMAP: Detailed Design.
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Figure 2b shows that the second kernel performs the
selection phase by distributing all the reads among the
GPU threads for processing. Each thread independently
inspects (i.e., in parallel) the list of potential sites (obtained
from Kernel 1), corresponding to the respective reads, and
chooses the best-mapped sites and scores. There cannot be
any race conditions with this approach because the best-
map results for each read are collected independently by a
different thread.

B. Lookup Table Optimization: Hashing vs. Binary Search

The sequential RMAP algorithm uses the C++ Standard
Template Library’s (STL) unordered_multimap data
structure, which implements a hash table to store and lookup
the keys. The hash table of the unordered_multimap
allows multiple keys to be grouped together without sorting
them. STL also implements a very efficient hash algorithm
for the quick insertion and retrieval of the key-value pairs
into the hash table. While there exist hashing implementa-
tions designed for the GPU [17], [18], they aim to accelerate
a single instance of the hashing problem, i.e., they use
all the threads on the GPU to lookup a single key in the
hash table efficiently. On the other hand, our design targets
enhancing the throughput of search by performing a coarse-
grained parallel execution, where each thread on the GPU
should independently search for a different key in the table.
Moreover, an inefficient hashing function will result in a
worst-case key insertion or retrieval time of O(n), where n
is the number of keys in the hash table, thus resulting in
larger number of memory accesses on the GPU, which in
turn, results in terrible performance if the access patterns do
not follow a set of alignment rules [13].

In GPU-RMAP, we modified RMAP and replaced the
unordered_multimap with the multimap data struc-
ture, where the keys are all sorted and similar keys are
obviously grouped. Adding the keys to an ordered map
is marginally more expensive than adding the keys to an
unordered map on the CPU. However, upon transferring the
keys to the GPU’s device memory, the lookup operation
on the keys can be done by using a simple binary-search
algorithm, where the lookup time will always be logarithmic
to the table size. In section VI, we show that this initial
optimization of GPU-RMAP, which uses binary search,
produces an impressive mapping speedup of 7× to 10.5×
over the sequential RMAP implementation on PC, which
uses hashing as its primary search algorithm. While binary
search (O(log n)) is a slower search algorithm on the CPU
than the conventional hashing technique (O(1)), we show
that the binary-search algorithm is a much better choice for
the GPU.

Further Optimization using Faster Cache Memory.:
All the GPU threads perform binary search repeatedly over
the same binary search tree of the keys. So, the top few
levels of the binary search tree will be accessed multiple

times throughout the execution of table lookup kernel, (i.e.,
Kernel 1). We used this knowledge and made an additional
optimization by moving the top few levels of the search tree
to the faster cache (shared) memory of each processing unit
on the GPU, as explained in Figure 3. However, the current
NVIDIA GPUs only have a cache capacity of 16 KB, and
therefore, we could transfer only about 10 to 15 levels of
the search tree to fit into the cache.

Accessing the GPU cache consumes approximately the
same number of clock cycles as accessing a register, whereas
an access to the device memory takes 400 to 600 GPU clock
cycles. Our optimization method reduces several slower
device memory accesses and produces a mapping speedup
of up to 14.5× over the sequential RMAP implementation
on the CPU. Additional details are provided in Section VI.

Before Lookup Search Tree Optimization: 

Device Memory (Slow)

Device Memory (Slow)

On-chip cache (Fast)

After Lookup Search Tree Optimization: 

Figure 3. GPU-RMAP: Optimization of the keys’ Lookup Table (search
tree) using the Faster Cache.

VI. PERFORMANCE ANALYSIS AND DISCUSSION

We first explain our experimental setup, followed by a
detailed discussion about the performance of GPU-RMAP.

A. Experimental Setup
For our experiments, we chose a simulated set of reads

that were generated by taking random segments of pre-
defined widths from existing human chromosomes and ran-
domly modifying some of the bases within them. We used
read widths of 32, 48 and 64 base-pairs (bp) and generated
sets of 1, 2, 4 and 8 million reads for each read width,
resulting in a total of twelve sets of reads as input data.
We also used a real set of reads for our experiments but
found that the trends and results were similar to the synthetic
reads. Hence, we do not present those results in this paper
for brevity.

For the target genomes, we chose to map all these
reads onto (1) the human genome, which is made
up of 23 chromosomes, totaling around 3 billion bp,
and (2) the available mosquito genome (Aedes ae-
gypti), which currently has around 1.4 million bp se-
quenced. We downloaded the human genome from
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http://hgdownload.cse.ucsc.edu and approxi-
mately 4800 supercontigs of the Aedes aegypti genome
assembly from http://aaegypti.vectorbase.org.
Because the complete mosquito genome is not available and
contains three chromosomes, we concatenated the super-
contigs and generated three chromosomes of fairly equal
sizes. Our experimental genome data thus included 23
chromosomes from the human genome and 3 chromosomes
from the mosquito genome. Moreover, to analyze the ef-
fect of the chromosome size / length on the performance
of GPU-RMAP, we performed additional experiments and
mapped the same set of reads on the following chromosomes
of the human genome: chromosome 1 (chr1), which
has about 250 million bp, chromosome 12 (chr12),
which has about 135 million bp and chromosome 22
(chr22), which has about 50 million bp. These chromo-
somes display the required variety in size / length.

RMAP maps only nucleotide reads, which can be repre-
sented by the alphabet set {A, C, G, T, N3}. The RMAP
tool encodes each nucleotide base by using a structure of
3 bits (for the 5 characters). So, any read with the width
up to 64 bp will be stored in the computer as a structure
of three 64-bit words. This storage mechanism proves to be
very efficient for the scoring phase (to count the number
of mismatches between the chromosome segment and the
read), where the score can be computed in time logarithmic
to the read length by using a series of bitwise operations,
as described by [19]. However, if the read width is greater
than 64, each read should be represented by a list of 64-
bit words. This means that more computation is needed to
convert each read into this format, and hence, the overall
speedup may be reduced. For all our experiments, we have
chosen to map the reads with width not greater than 64
because we can easily store each read as only three 64-
bit words on the GPU. Maintaining a list of 64-bit words
on the GPU to represent larger read widths proves to be
computationally expensive on the GPU.

Our parallel execution environment for running all of the
above experiments was the NVIDIA Tesla C1060 GPU with
CUDA v2.3 as our programming interface to the GPU. Our
results are shown for the best possible CUDA execution
configuration, where the mapping kernels have 480 blocks
of 256 threads running across the entire GPU. The Tesla
GPU card has 4-GB global device memory and each of its
cores runs at 1.2 GHz. The above GPU was placed in a
PC that contained an AMD quad-core processor (each core
running at 1.2 GHz) as the host CPU. The host CPU had 8-
GB RAM. All the chosen sets of reads and genomes fit well
into both the host and device memory. We ran the sequential
implementation of RMAP, with which we compared the
results of GPU-RMAP, on one of the cores of the host AMD
processor.

3‘N’ stands for an unknown base or error.

B. Results and Discussion

1) Analysis of Speedup: Figure 4 shows the RMAP
execution time being partitioned into its different phases and
compared to the sequential RMAP algorithm. This figure
shows a couple of our several experimental runs, where we
map 1-million reads on the entire mosquito genome and map
8-million reads on the complete human genome. Also, we
compare performance by varying the read widths with 32,
48 and 64 bp. Although we have run this experiment for
all the reads-genomes combinations, we present only the
above results in this paper due to space constraints. In the
examples shown, we show that the mapping phase has been
accelerated by about 9.2× – 14.5×, and the total execution
time has been improved by 5.5× – 9.6×, when compared
to the sequential RMAP.
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Figure 4. GPU-RMAP vs. Sequential RMAP: Analysis of Speedup.
Note: The Lookup Table Construction and the Output generation times are
negligible when compared to the overall execution time of the program,
and hence, they may not visible in the chart.

Effect of the Fast Cache Memory Optimization: Fig-
ure 5 presents the partition of the execution times of the
sequential RMAP on PC, along with GPU-RMAP with and
without the faster cache memory optimization (section V-B).
This particular experiment maps 1-million 64-wide reads
on the chromosome 1 of the human genome. The figure
shows that the mapping speedup increases from 10.53×
to 13.82×, and the total program execution improves from
5.93× to 6.77× over the sequential RMAP execution on
PC. The initialization phase of RMAP (reading the reads
and the chromosome from the disk, and allocating the
required memory) is unavoidable and cannot be parallelized.
Moreover, the initialization phase takes a substantial chunk
of the overall execution time in all the versions of RMAP
and GPU-RMAP, and therefore, the total program speedup
is measurably less than the mapping speedup alone. The
figure also shows that the design of GPU-RMAP is highly
efficient, because the most significant amount of the map-
ping time is taken up by the execution of the CUDA kernels,
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Figure 5. Code Profile of GPU-RMAP: Effect of Fast Cache Memory
Optimization (chromosome 1 Vs. 1 million 64-wide Reads).

while the GPU memory initialization, GPU-to-CPU memory
transfers, and the miscellaneous post-processing phases are
quite negligible.

2) Effect of Read Width: All the charts in the Figure 6
show the impact of the read width on the mapping phase
and the overall execution speedup of GPU-RMAP. The
speedup values do not change when the width of the reads
changes because the computational overhead for scoring the
chromosome segments against the reads will be not change if
the read width is < 64 bp. If we had used larger-sized reads,
then we could expect a decrease in performance because
of the more complicated storage overhead, as explained in
Section VI-A. However, since the reads generated by the
modern sequencing instruments are very short (typically 25-
100 bases each), we believe that the above limitation is a
reasonable one.

3) Effect of Chromosome Size: Figure 6a shows the
impact of the chromosome size on the mapping speedup
of GPU-RMAP. The speedup remains almost the same for
all the chromosome sizes but is less for chr22 (smallest
in size) and the entire human genome (largest in size). The
chr22 is very small to keep all the GPU threads busy,
i.e., GPU resources are wasted when trying to map smaller
chromosomes. On the other hand, the entire human genome
contains several chromosomes. The additional overhead of
repeatedly moving different chromosomes to and from the
GPU device memory thwarts the performance of GPU-
RMAP when we map the reads against the whole human
genome.

4) Effect of Number of Reads: Figures 6b and 6c show
the impact of the number of reads on the mapping speedup
of GPU-RMAP on the complete human genome and the
mosquito genome, respectively. While the execution time
increases for larger number of reads (data not shown for
brevity), the speedup factor decreases for larger number of
reads. This means that when the number of reads increases,

the table lookup time (binary search) in the GPU-RMAP
code increases at a higher rate than the table lookup time
(hashing) in the sequential RMAP code. While the above
results may indicate that the binary search implementation
on the GPU is a potential bottleneck for larger sets of input
data, GPU-RMAP (using binary search) shows speedups
of up to 14.5× over the sequential RMAP implementation
(using hashing) on a PC.

VII. CONCLUSIONS

In this paper, we accelerated an extremely popular short-
read mapping application called RMAP onto the GPU.
To demonstrate how we achieved up to 14.5× mapping
speedup and 9.6× total program execution speedup over the
sequential RMAP implementation on a traditional PC, we
presented a detailed design of GPU-RMAP, along with an
efficient fast cache memory optimization.

We then performed a detailed experimental analysis by
mapping millions of reads of different widths on the
mosquito and the human genomes. We discussed in detail
about the effects of various input parameters on the perfor-
mance, like the read width, genome size, and number of
reads. Next, we presented and discussed the profiled code
and the speedups achieved by the different phases of the
GPU-RMAP algorithm and show that our design decisions
are very efficient. In addition, we presented our idea of
dividing the RMAP algorithm into two stages to avoid
the classic race condition problem, so that correctness is
ensured. We also show that despite using the conventionally
slower binary search algorithm, GPU-RMAP out-performs
the sequential RMAP implementation, which uses the faster
hashing technique on a PC.

As future work, we would like to develop detailed per-
formance models for the GPUs and evaluate the actual
performance of GPU-RMAP against the model. We also
hope to implement other sequence search or sequence align-
ment algorithms that use hashing as a core computational
component (e.g., BLAST) on the GPU and evaluate them
against the techniques used in GPU-RMAP.
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