
An Automated Framework for
Characterizing and Subsetting GPGPU Workloads

Vignesh Adhinarayanan and Wu-chun Feng
Department of Computer Science, Virginia Tech

Blacksburg, VA 24061, U.S.A.
{avignesh, wfeng}@vt.edu

Abstract—Graphics processing units (GPUs) are becoming
increasingly common in today’s computing systems due to their
superior performance and energy efficiency relative to their cost.
To further improve these desired characteristics, researchers
have proposed several software and hardware techniques. Eval-
uation of these proposed techniques could be tricky due to the
ad-hoc nature in which applications are selected for evaluation.
Sometimes researchers spend unnecessary time evaluating re-
dundant workloads, which is particularly problematic for time-
consuming studies involving simulation. Other times, they fail
to expose the shortcomings of their proposed techniques when
too few workloads are chosen for evaluation.

To overcome these problems, we propose an automated
framework that characterizes and subsets GPGPU workloads, de-
pending on a user-chosen set of performance metrics/counters.
This framework internally uses principal component analysis
(PCA) to reduce the dimensionality of the chosen metrics and
then uses hierarchical clustering to identify similarity among
the workloads. In this study, we use our framework to identify
redundancy in the recently released SPEC ACCEL OpenCL
benchmark suite using a few architecture-dependent metrics.
Our analysis shows that a subset of eight applications provides
most of the diversity in the 19-application benchmark suite.
We also subset the Parboil, Rodinia, and SHOC benchmark
suites and then compare them against each other to identify
“gaps” in these suites. As an example, we show that SHOC
has many applications that are similar to each other and could
benefit from adding four applications from Parboil to improve
its diversity.

I. INTRODUCTION

Accelerators such as graphics processing units (GPUs) are
becoming increasingly common in today’s high-performance
computing (HPC) systems due to their superior performance
and energy efficiency relative to their cost. This can be seen
from the increasing share of accelerators in the TOP500 list
which ranks supercomputers in terms of performance. In
the latest November 2015 list, a total of 104 systems use
accelerators, up from 75 systems an year ago [1].

To meet the computational and energy efficiency demands
put forth by HPC applications, researchers have proposed
several software and hardware solutions for GPUs. However,
the current ad-hoc approach to evaluate such research tech-
niques is fraught with danger. Typically, a random set of ap-

plications relevant to the HPC community is put together and
used for such studies. Alternatively, a pre-existing benchmark
suite such as Parboil [2], Rodinia [3], [4], or SHOC [5] is
used for evaluation, without much thought into the nature of
the applications included in these suites. A rigorous evalua-
tion requires a diverse set of applications that is representative
of the targeted domain. However, simply increasing the num-
ber of applications for evaluation is generally a bad idea for
time-consuming studies that involve simulation. Furthermore,
this approach may end up (unintentionally) over-emphasizing
certain types of workloads.

To combat the above problem, at least to some extent, the
SPEC committee put together the SPEC ACCEL benchmark
suite [6]. This suite consists of 19 OpenCL applications
and 12 OpenACC applications, which are supposed to be
representative of the HPC domain and to stress the various
components of an HPC accelerator, i.e., GPU. However, it
is not clear whether this suite is well balanced and avoids
redundancy in its coverage of the application space.

In this study, we study the 19 applications from the
SPEC ACCEL OpenCL suite, identify redundancy among
these applications, and subset the suite using the well-
known principal component analysis (PCA) and clustering
analysis techniques. We also perform this subsetting for other
prominent and well-established GPGPU workloads from Par-
boil, SHOC, and Rodinia. Then, we compare applications
across suites to identify areas where these suites could be
improved. In all, we provide a way to systematically identify
relevant and well-balanced applications for evaluating various
techniques targeted at the GPU. Our major contributions are
the following:

• A set of architecture-dependent metrics that are most im-
portant for characterizing high-performance computing
(HPC) GPGPU workloads for the purpose of evaluating
modern accelerators.

• A methodology that captures best approaches from
previous studies in order to systematically study GPGPU
workloads.

• A concrete illustration of redundant workloads in the
production-oriented SPEC ACCEL benchmark suite and
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the academia-oriented Rodinia, Parboil, and SHOC
benchmark suites as well as a proposed subsetting of
these benchmark suites to eliminate such redundancy.

• Recommendations for expanding the existing bench-
mark suites if they lack specific application coverage.

Our major findings are noted as follows. First, it is possible
to successfully subset GPGPU workloads with architecture-
dependent metrics. We validate this with the publicly avail-
able speedup results for SPEC ACCEL for 18 different
hardware platforms by comparing speedup results calculated
with the original SPEC ACCEL suite against the subsetted
suite. Second, SPEC ACCEL and Parboil exhibit the highest
diversity, while Rodinia and SHOC not only show lower
diversity, but also more redundant workloads.

The rest of the paper is organized as follows. We discuss
related work in Section II and distinguish our work from
others in this field. We describe our hardware and the
workloads used in Section III and explain our methodology in
Section IV. The characterization, subsetting, and comparison
results are presented in Section V and we conclude in
Section VI.

II. RELATED WORK

While there exists a significant body of work in the area
of characterizing and subsetting workloads, they differ from
one another in the specific task they seek to accomplish, the
hardware platforms they are targeted at, the domain they
focus on, the metrics, and the techniques they use. In this
section, we discuss how these works differ from one another
and how our work differs from these.

First, we classify the related work in terms of the task they
seek to accomplish. Characterization focuses on studying
each application within a benchmark suite based on a certain
metric of interest. This may be followed up with a diversity
analysis, where applications within a benchmark suite are
compared against one another to find the ones that are similar
or dissimilar to each other. Subsetting goes one step further
in composing a well-balanced and well-represented suite
by employing a formal methodology to analyze redundancy
and remove applications that do not provide any additional
information (or value). This is also usually followed by a
validation step, which would show that we indeed have a
representative suite after subsetting. Input selection is closely
related to the above, where the emphasis is on selecting
representative input instead of selecting representative appli-
cations. Finally, the comparison and expansion task looks at
several different benchmark suites to identify gaps in existing
or emerging workloads. Table I chronicles the effort made in
this field. The emphasis in our work is on the subsetting
and expansion tasks for less-explored devices such as the
graphics processing unit (GPU) and for the associated high-

performance computing (HPC) domain, which has not been
done previously.

While previous work has explored dimensionality-
reduction techniques such as principal component analy-
sis (PCA) [7], correlation elimination [11], genetic algo-
rithm [11], and Plackett and Burmann (P&B) design tech-
nique [10] in combination with k-means and hierarchical
clustering techniques [7], the combination of PCA and hier-
archical clustering has proven to be the most successful [10].
We adopt and apply these best practices in our work. While
micro-architecture independent metrics have proven to be
more successful in CPUs for the subsetting task, the limited
support for GPU application profiling does not allow such
detailed level of profiling. Therefore, we use architecture-
dependent metrics in our work. We validate our subsetting
approach using the SPEC ACCEL results reported to and
publicly available from SPEC. This is similar to the technique
proposed by Phansalkar et al. [13] where the SPEC rating
calculated from the original benchmark suite is compared
against the subsetted benchmark suite. By adopting the best
approaches used in previous studies and applying them to
GPGPU workloads, we expand on existing literature by
focusing on a new domain.

Next, we distinguish our work from previous work on
workload characterization in the GPGPU space. Kerr et al.
characterized CUDA workloads from the NVIDIA CUDA
SDK and Parboil benchmark suite for the purposes of opti-
mizing these applications [18]. Goswami et al. went further
by performing diversity analysis on CUDA SDK, Parboil,
and Rodinia on the GPGPU-Sim simulator [19] rather than
on real hardware. Che et al. performed a diversity analysis
on the Rodinia benchmark suite and compared the breadth of
their benchmark suite against the Parsec workloads. Our work
goes beyond the above in that we perform the subsetting task,
which involves removing redundant workloads in a suite to
make it well balanced, and a validation task in our method-
ology. To illustrate the efficacy of our automated framework,
we work on the recently released production-oriented SPEC
ACCEL in addition to the academic benchmarks noted above.
Finally, we note that our work is performed on a real and
modern hardware systems.

III. EXPERIMENTAL SETUP

In this section, we describe the hardware platform and the
workloads used in this study.

A. Hardware Platform

We conduct our experiments on a NVIDIA Kepler GK110
GPU [20], the block diagram of which is presented in
Fig. 1. This GPU consists of 15 streaming multiprocessors
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TABLE I: Summary of Related Work

Related
Work

Task Hardware
Platform

Benchmarks Method Validation

[7] Diversity Analysis &
Input Selection

Alpha CPU SPECint95, TPC-D PCA + Hierarchical
Clustering

Same clusters formed
for different µ-arch
configuration

[8], [9] Subsetting Alpha AXP-
2116

SPEC CPU 2000,
MiBench, MediaBench

PCA + K-Means Predict IPC and
cache miss rate for
entire suite

[10] Subsetting CPU
Simulation

SPEC CPU 2000 PCA, P&B, 5 non-
statistical methods

Mean speedup on
different architectures
with and without
subsetted suite

[11], [12] Comparison Alpha 21164A BioInfoMark,
BioMetrics workload,
CommBench,
MediaBench, MiBench,
SPEC CPU 2000

PCA/Genetic
Algorithm + K-
Means with BIC

N/A

[13] Subsetting Sun
UltraSPARC,
x86, Itanium,
IBM Power

SPEC CPU 2006,
SPEC CPU 2000

PCA + Hierarchical
clustering/K-Means

SPEC score without
subsetting vs SPEC
score with subsetting

[14] Comparison Intel Pentium 4 BioInfoMark, Bio-
Metrics, MediaBench,
SPEC CPU 2000

PCA/Genetic
Algorithm + K-
Means with BIC

N/A

[15] Comparison IBM J9 VM MIDPmark, Mor-
phMark, Caffeine,
EEMBC Java, Real
mobile applications

PCA/Genetic
Algorithm +
Hierarchical
clustering

N/A

[16] Subsetting Intel Westmere BigDataBench PCA + Hierarchical
clustering/K-Means

No validation

[17] Diversity Analysis Intel Xeon
E5345

TPC-H, SPEC CPU
2006, SPECjbb2013

PCA + Hierarchical
clustering/K-Means

No validation

[18] Characterization Ocelot GPU
simulator

CUDA SDK, Parboil N/A N/A

[19] Characterization and
Diversity Analysis

GPGPU-Sim CUDA SDK, Parboil,
Rodinia

PCA + Hierarchical
clustering

N/A

[4] Diversity Analysis &
Comparison

NVIDIA
GTX480
(GPU)

Parsec, Rodinia PCA + Hierarchical
clustering

N/A

This paper Subsetting & Com-
parison

NVIDIA
Kepler GTX
Titan (GPU)

SPEC ACCEL, SHOC
Parboil, Rodinia

PCA + Hierarchical
clustering

SPEC score without
subsetting vs
SPEC score with
subsetting

(SMs). Each SM consists of an instruction cache, four warp
schedulers which are responsible for scheduling warps (a
collection of threads) to the SMs, and eight instruction
dispatch units which determines the instruction scheduled
in a given clock cycle. There are 192 CUDA cores within
each SM where each core has its own integer and single-
precision floating point arithmetic logic units (ALUs). Each
ALU can perform an add, multiply, or a fused-multiply
operation. The SMs are also provided with double-precision
(DP) units, special function units (SFU), and load/store
(LD/ST) units for executing the corresponding instructions.
Apart from these instructions, the GPU is also capable of
executing branch instructions, atomic instructions, and shuffle
instructions. Each SM also has a 65,536 x 32-bit register file,
64 KB configurable shared memory and L1 cache, a 48 KB
read-only data cache, and several texture units. Common to
all the SMs, there is 1536 KB of L2 cache, six memory
controllers, and a 6 GB off-chip DRAM.

B. Workloads

In this study, we subset four different GPGPU benchmark
suites, namely SPEC ACCEL, SHOC, Parboil, and Rodinia.
For the SPEC ACCEL benchmark suite, instead of using
the OpenCL version available via SPEC, we use CUDA-
equivalent version from the original sources. This is because
of the rich set of performance counters and metrics available
for CUDA programs on NVIDIA architecture via nvprof
interface. Considering the importance of choosing the right
set of metrics in performing the analysis, we chose the
CUDA version over the OpenCL version for SPEC ACCEL.
For the other three benchmark suites, implementations in
several languages are available, but we choose the CUDA
implementation for reasons noted above.

A short description of the applications in SHOC, Parboil,
and Rodinia is presented in Table II, Table III, and Table IV.
SPEC ACCEL benchmarks are a subset of these applications,
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Fig. 1: Block diagram of NVIDIA Kepler

so we do not describe them separately.

TABLE II: Summary of SHOC benchmarks

Benchmark Description Size 1

BFS Breadth-first search S4
FFT 512-pt 2-D fast Fourier transforms S4
MD Molecular dynamics application that calcu-

lates Lennard-Jones potential
S3

Reduction Sum of elements in an array S4
Scan Performs prefix sum calculations S4
GEMM General matrix-matrix multiplication S4
Sort Performs a fast radix sort on several key-

value pairs
S4

SpMV Sparse matrix-vector multiplication (CSR
scalar, CSR vector, and ELLPACKR)

S4

Stencil2D 2-D 9-pt stencil computation S3
Triad Performs streaming dot-product multiplica-

tion
S4

QTC Quality threshold clustering S4
S3D Computes the rate of a chemical reaction S4

IV. METHODOLOGY

In this section, we describe the methodology used to subset
GPGPU workloads. The general approach can be described

1S3 refers to medium-sized problems and S4 refers to large-sized prob-
lems in SHOC terminology.

TABLE III: Summary of Parboil benchmarks

Benchmark Description Size
BFS Breadth-first search 1M nodes
CutCP Distance-cutoff Coulombic potential Default
Histo Saturating histogram Medium
LBM Lattice-Boltzmann method fluid dy-

namics
Default

MatMul Dense matrix-matrix multiply Default
MRI-G Magnteic resonance imaging on a reg-

ular grid
Default

MRI-Q Magnetic resonance imaging in non-
cartesian space

Small

SAD Sum of absolute differences Default
SpMV Sparse-matrix dense-vector multiplica-

tion
Medium

Stencil3D 3-D stencil operation Small
TPACF Two-point angular correlation function Default

TABLE IV: Summary of Rodinia benchmarks

Benchmark Description
Backprop Train weights in neural network using backward

propagation technique
BFS Breadth-first search
BPlusTree Traverses a B+ tree
CFD Computational fluid dynamics for unstructured

grids
Gaussian Gaussian elimination method for solving equa-

tions
HeartWall Track changing shape of a mouse’s heart
HotSpot Solves differential equation to generate proces-

sor’s heatmap
K-Means Clustering of data points
LavaMD N-body algorithm
Leukocyte Computing maximal gradient inverse coefficient

of variation to track leukocyte
LUD LU decomposition for solving a system of linear

equations
MummerGPU Local sequence alignment
Mycocyte Structured grid application to simulate mycocyte

cells
kNN Nearest neighbor algorithm
NW Needleman-Wunsch algorithm for DNA se-

quence alignment
ParticleFilter Estimates the location of an object from noisy

data
PathFinder Find the shortest path between two points in a

2-D grid
SRAD Speckle reducing anisotropic diffusion for re-

moving speckles in image
StreamCluster Online clustering algorithm

as follows: (i) collect a set of suitable micro-architectural
events/metrics during an application’s execution (ii) apply
principal component analysis (PCA) to remove redundancy
in the collected metrics and (iii) group applications showing
similar metrics together using a clustering technique. Each
of these steps and the rationale behind the choices we made
are described next.

A. Metrics

The subsequent two steps, i.e., dimensionality reduction
and clustering analysis have been thoroughly studied in the
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past [7]–[19] and making the right choice of techniques for
these steps is easier. Choosing the right metric, on the other
hand, is highly dependent on the end goal of the study and
the target architecture.

The expectation for a benchmark suite such as SPEC
ACCEL is to stress the various components of an archi-
tecture. Therefore, we look at all the major components in
our target architecture (shown in Figure 1) and pick the
most relevant metric for each component to perform this
study. Qualitatively, we reason that any component could be
a potential bottleneck for performance, and therefore picking
one metric per component is justified. We also quantitatively
justify our choice of metrics by validating the metrics and
the approach in Section V.

The chosen metrics are summarized in Table V. We group
these metrics into four major categories as described below:

Front End: This category includes all metrics associated
with the scheduling of instructions. The relevant metrics
are the number of instructions issued and the number of
instructions executed. The warp scheduler, while an important
component, does not have a relevant metric that can be
measured in our GPU.

Instruction Mix: This includes metrics such as integer
instructions, floating point instructions (single precision and
double precision), control instructions, special purpose in-
structions, and miscellaneous instructions such as shuffle and
atomic operations. All metrics are measured on a per-cycle
basis.

On-chip Data Transfer: This is related to the portion of
the memory hierarchy present within the chip. Utilization of
shared memory, L1 cache, L2 cache, and texture memory is
measured.

Off-chip Data Transfer: This is related to the portion
of the memory hierarchy present outside the chip. The
utilization of DRAM is measured.

While some of the metrics chosen in this step are correlated
to each other, we leave the task of removing correlated
metrics to the next step.

B. Principal Component Analysis

We use the principal component analysis (PCA) technique
for dimensionality reduction. The advantages of using a PCA
are two-fold: (i) they remove redundancy in the collected
dataset and (ii) they help in reducing the number of variables
used in subsequent steps which can be useful for visually
presenting the relevant information.

At a higher level, the goal of this technique is to rotate the
m axes associated with raw dataset in order to increase the
variance of the data projected on to n fewer axes. These n

transformed axes can then be used to represent the original
information with fewer variables at the cost of a minimal loss
in information.

A key decision to make is the number of principal compo-
nents to retain for the subsequent stages. We choose to limit
the loss of variance to utmost 10%, which is consistent with
past studies [19], in order to retain most of the information
available in the raw variables. For our collected dataset, using
six principal components is sufficient to meet this target.

C. Hierarchical Clustering

Two clustering schemes, namely, hierarchical and k-means
clustering, could potentially be used to group similar appli-
cations. The advantage of hierarchical clustering is that the
decision on the number of clusters can be made after the
clustering process which makes it easier to perform a number
of what-if analyses. Therefore, we use hierarchical clustering
in our framework.

In this technique all the data points are individual clusters
initially. The clusters with the shortest single linkage dis-
tance, which is the distance between the closest points in the
two clusters, are grouped together iteratively. This process
continues until all the clusters are grouped into one cluster.

Once the clusters are formed, we present the resultant in-
formation in the form of a dendrogram. Applications that are
similar to each other are connected by shorter line segments
while dissimilar applications are connected by longer line
segments in the dendrogram.

D. Automated Application Subsetting Framework

We implement a framework (Fig. 2) in Python that uses the
techniques described above to automatically subset bench-
mark applications. The framework works as follows:

• The end-user selects the applications and problem size
for each application and writes a execution script to run
all these applications.

• The user also provides a list of metrics to perform this
study from a list of metrics provided by the nvprof tool
(nvprof --query-metrics).

• Profiling: The framework runs the applications with
nvprof and collects the selected metrics for all the GPU
kernels in the chosen applications. Some of the metrics
used in this study are non-aggregatable as they are pre-
normalized by nvprof. Therefore, for each application,
the longest running kernel is picked as the representa-
tive kernel and the corresponding metrics are gathered
together.

• Data preprocessing: A Python script normalizes the
collected metrics as the next step (i.e., PCA) is suscep-
tible to dissimilar ranges of values.
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TABLE V: Relevant metrics for understanding the impact of workload on the microarchitecture

Category Hardware unit Abbr Metrics

Front End Instruction Cache IPC Number of instructions executed per cycle (ipc)
Instruction Dispatch Unit ISS Number of instructions issued per cycle (issued ipc)

Execution Units Core (Int) INT Number of integer instructions executed per cycle (inst integer)
Core (Float) FP SP Number of single-precision instructions executed per cycle (inst fp 32)
DP Unit FP DP Number of single-precision instructions executed per cycle (inst fp 64)
LD/ST Unit LD ST Number of compute load/store instructions executed per cycle (inst compute ld st)
SFU SFU Number of single-precision floating-point special operations per cycle

(flop count sp special)
Control CTRL Number of control instructions such as jump, branch, etc. per cycle (inst control)
Other instructions MISC Number of miscellaneous instructions executed per cycle (inst misc)

On-chip
Data Transfer

L1 Cache and
Shared Memory

L1 SH Utilization level of L1 cache and shared memory combined relative to the peak
utilization (l1 shared utilization)

Texture Cache TEX Utilization level of texture cache relative to the peak utilization (tex utilization)
L2 Cache L2 Utilization level of L2 cache relative to the peak utilization (l2 utilization)

Off-chip
Data Transfer

Memory controller and
DRAM

DRAM Utilization level of DRAM relative to the peak utilization (dram utilization)

• Dimensionality reduction: Principal component anal-
ysis is performed on the normalized data using the
sklearn package.

• Clustering: The top six principal components are used
to perform a hierarchical clustering using the scipy
package.

• Graphing: The clustered workloads are graphed and
presented in the form of a dendrogram using the
matplotlib package. This graph is the used by the
end-user for manual randomized subsetting.

Applications

Metrics

Profiling
Data 

Preprocessing

Dimensionality

Reduction
Clustering Graphing

Fig. 2: Automated application subsetting framework

V. RESULTS AND DISCUSSION

This section presents the results of our characterization
and subsetting experiments with SPEC ACCEL, which is
followed by a validation of the metrics and methodology.
Similar sets of results are presented for the academia-oriented
SHOC, Rodinia, and Parboil. A diversity analysis is per-
formed to identify “gaps” in these benchmark suites.

A. Results for SPEC ACCEL

In this section, we present a high-level characterization
of SPEC ACCEL based on compute- and memory-centered
metrics. Next, we analyze redundancy in this suite and iden-
tify a smaller subset of applications that provide sufficient
diversity while keeping the suite well balanced. Finally, we
empirically validate our approach.

Characterization Results: Fig. 3 shows the instruction
mix for the applications in SPEC ACCEL. In this suite,
we observe a diverse mix of applications. We find applica-
tions that are predominantly composed of (i) single-precision
floating point instructions (e.g., LBM) (ii) double-precision
floating point instructions (e.g., LavaMD) and (iii) integer in-
structions (e.g., BPlusTree). We also notice applications with
a relatively high percentage of control-flow instructions (e.g.,
BFS) and load/store instructions (e.g., NW). Applications
such as BFS and Gaussian also perform many miscellaneous
operations that do not fit in the above categories. Based on
the above observations, we could infer that SPEC ACCEL is
diverse in terms of instruction mix.

Fig. 4 presents the utilization of the various levels of
the memory hierarchy for SPEC ACCEL applications. The
values presented in this graph are normalized against the peak
bandwidth offered by the corresponding level of the memory
hierarchy. We observe that only 4 out of the 19 applications
show a high DRAM utilization above 50%. This indicates
that most of the applications in this benchmark suite are
compute-bound. We also notice that nearly all applications
utilize only a fraction of the bandwidth offered by the L1
and L2 caches. Based on the above observations, we could
gather that SPEC ACCEL is less diverse in terms of memory
utilization.

Our expectation is that applications such as TPACF and
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Fig. 3: Instruction mix for SPEC ACCEL benchmark suite. Applications derived from Rodinia are denoted by (R) and those
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Fig. 4: Memory Utilization for SPEC ACCEL benchmark suite. Applications derived from Rodinia are denoted by (R) and
those derived from Parboil are denoted by (P).

Stencil3D which have very similar instruction mix, but dif-
ferent memory behavior, will be categorized as dissimilar by
our framework.

Subsetting Results: The diversity of the applications in
SPEC ACCEL is presented in the form of a dendrogram
in Fig. 5. The x-axis of the dendrogram represents linkage
distance which is a measure of similarity. Applications that
are similar to each other are connected by lines with a
shorter distance. For example, NW, KMeans, LUD, BFS,
and Gaussian are all linked by short lines and they form
a dense cluster. These five applications may be replaced by
a single application to make the suite uniformly balanced.
Stencil3D, on the other hand, is unique and not connected
by a short line with any other application. As expected, this
application is slotted in a cluster different from TPACF due
to the differences seen in memory utilization in Fig. 4.

In Fig. 5, we have formed eight clusters which are color
coded. Choosing one application randomly from each cluster
will help form a balanced suite. Representative subsets with
four, six, and eight applications are shown in Table VI.

TABLE VI: Representative subset for SPEC ACCEL

Four apps TPACF, Stencil3D, LUD, CutCP
Six apps TPACF, Histo, Stencil3D, LBM, LUD,

CutCP
Eight apps TPACF, Histo, Stencil3D, CFD, LBM,

LUD, CutCP, MRI-Q

Validation: We show that the chosen metrics and the
methodology is appropriate for the given task using the
following validation technique. We gather the SPEC rating,
which is the speedup obtained relative to a reference machine,
for eighteen machines populated with different accelerators.
Then, we calculate a new speedup value from the eight
subsetted applications obtained through our methodology. If
our selected subset is truly representative of the entire suite,
then the new speedup score will be nearly the same as the
score calculated from the entire benchmark suite.

The original and new speedup values for the eighteen
machines whose results have been submitted to SPEC are
presented in Table VII. The overall error rate for our sub-
setting methodology is 6.94% and the worst-case error rate
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Fig. 5: Dendrogram for SPEC ACCEL benchmark suite. The
x-axis represents linkage distance. Applications derived from
Rodinia are denoted by (R) and those derived from Parboil
are denoted by (P).

is 27.36%. By comparison, inadvertently selecting all the
applications from a dense cluster in the dendrogram (e.g.,
NW, KMeans, LUD, BFS, and Gaussian) would result in a
worst-case error rate of 145%. This shows that our chosen
subset of benchmarks can reasonably predict the performance
of the entire suite in a variety of platforms. Forming such
smaller subsets will help reduce evaluation time for newer
architectures.

Next, we analyze the data in Table VII to identify cases
where our methodology shows a relatively poor accuracy.
The error rate is high for nearly all platforms whose vendor
is different from our experimental platform (2 out of 2 AMD
and 2 out of 3 Intel accelerators). In fact, the bottom four
machines are all from a different vendor. However, the met-
rics and the methodology works well for the various NVIDIA
GPUs spanning multiple microarchitectural generations.

The above observation is understandable because certain
metrics such as special floating point operations may not be
meaningful for architectures from other vendors. This stresses
the importance of using architecture-independent metrics for
characterization and subsetting. With the recent introduction
of binary profiling tools for GPUs such as SASSI [21],
it may be possible to expand this study with architecture-

TABLE VII: Speedup results with and without subsetting

Accelerator Original
Speedup

New
Speedup

Error
(%)

NVIDIA Tesla C2070 0.98 0.98 0.45
NVIDIA Tesla K20 #1 1.52 1.50 0.69
NVIDIA Tesla K20 #2 1.44 1.43 1.04
Intel Xeon E5620 0.25 0.25 1.97
NVIDIA GTX 680 1.15 1.11 3.37
NVIDIA Tesla K40m 1.92 1.99 3.93
NVIDIA GTX TITAN #2 2.17 2.28 4.89
NVIDIA Tesla K40c #3 1.87 1.96 5.05
NVIDIA Tesla K40c #1 1.98 2.09 5.53
NVIDIA Tesla K20c 1.68 1.77 5.65
NVIDIA Tesla K20Xm 1.72 1.84 6.69
NVIDIA Tesla K20 #3 1.29 1.20 6.69
NVIDIA GTX TITAN #1 2.41 2.58 7.16
NVIDIA Tesla K40c #2 1.90 2.05 7.76
Intel Xeon E5-2697 v3 2.09 1.90 9.05
AMD Radeon HD 7970 1.71 1.95 13.67
AMD Radeon R9 290 1.41 1.61 13.87
Intel Xeon Phi 5110P 0.44 0.32 27.36
Average error 6.94

independent metrics in the near future.

B. Results for SHOC, Rodinia, and Parboil

In this section, we present the subsetting results for
SHOC, Rodinia, and Parboil benchmark suites. We omit the
high-level characterization of instruction mix and memory
utilization for these benchmarks due to space constraints.

Subsetting SHOC benchmark suite: Figure 6 shows the
dendrogram for SHOC benchmark suite. SHOC has many
applications that are very similar to each other with linkage
distance lower than five for many pairs of applications (a
lower value for linkage distance is indicative of similarity
between applications). Representative subsets of four, six,
and eight applications are shown in Table VIII.

TABLE VIII: Representative subset for SHOC

Four apps Sort, BFS, GEMM, SpMV (vector)
Six apps Sort, BFS, SpMV (scalar), Scan, GEMM,

SpMV (vector)
Eight apps Sort, BFS, SpMV (scalar), Triad, Scan,

GEMM, SpMV (vector), Stencil2D

We make the following observations from the dendrogram.

Observation 1: GEMM, FFT, and MD, while being fun-
damentally different algorithms, all exhibit similar execution
behavior. If the end goal is to compare relative speedup on
different architectures, it is sufficient to pick one among
these three from the level 1 primitives (i.e., basic parallel
algorithms) of SHOC.

Observation 2: CSR scalar representation of SpMV is
similar to Triad and CSR vector is similar to Reduction and
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Fig. 6: Dendrogram for SHOC benchmark suite. The x-axis
represents the linkage distance.

Stencil2D. Thus, by including SpMV in a study, three other
level 1 applications may be avoided.

Observation 3: The two real-world level 2 applications
S3D and QTC already belong to different clusters (i.e, they
show widely differing behaviors). Real-world applications
exhibiting characteristics of benchmark applications such as
Sort, BFS, Scan, and Stencil2D is currently lacking.

Subsetting Rodinia benchmark suite: Fig. 7 shows the
dendrogram representation of the clusters formed for Rodinia.
Based on this dendrogram, we arrive at representative sub-
sets of four, six, and eight applications which is shown in
Table IX.

TABLE IX: Representative subset for Rodinia

Four apps Hotspot, CFD, LUD, StreamCluster
Six apps Hotspot, Backprop, CFD, LUD, LavaMD,

StreamCluster
Eight apps Hotspot, Backprop, Leukocyte, CFD, LUD,

LavaMD, StreamCluster, BPlusTrees

We make the following observations regarding the Rodinia
benchmark suite.

Observation 4: One of SRAD and HotSpot, one of Heart-
Wall and Backprop, one of Leukocyte and CFD, one among
NW, BFS, KMeans, ParticleFilter, Gaussian, LUD, and kNN,
and either StreamCluster or BPlusTree is sufficient to capture
the majority of the diversity of Rodinia.

Observation 5: Applications belonging to the same
“dwarf” category may differ widely in their behavior, where
a dwarf is a fundamental computation and communication

0 5 10 15 20 25

BPlusTree
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LavaMD

kNN

LUD

Gaussian

ParticleFilter

KMeans

BFS

NW

CFD

Leukocyte

Backprop

HeartWall

HotSpot

SRAD

Fig. 7: Dendrogram for Rodinia benchmark suite. The x-axis
represents the linkage distance.

idiom. Similarly, applications belonging to different dwarf
categories (ex. BFS, NW) can exert the microarchitecture in
similar fashion.

Subsetting Parboil benchmark suite: Figure 8 shows the
dendrogram representation of the clusters formed for Parboil.
Based on this dendrogram, we arrive at representative subsets
of four, six, and eight applications which is shown in Table X.

TABLE X: Representative subset for Parboil

Four apps TPACF, Stencil3D, MatMul, CutCP
Six apps BFS, TPACF, Stencil3D, MatMul, MRI-G,

CutCP
Eight apps LBM, BFS, TPACF, Stencil3D, SAD, Mat-

Mul, MRI-G, CutCP

The following observations are made regarding the Parboil
benchmark suite.

Observation 6: The linkage distances of all the clusters
are ten or more. When compared to the other benchmark
suites, this is significantly higher indicating that a diverse
set of applications are covered by this suite.

Expanding the existing benchmark suites: We put all
the benchmark suites we have examined so far together and
perform a diversity analysis on the ensemble. This will help
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Fig. 8: Dendrogram for Parboil benchmark suite. The x-axis
represents the linkage distance.

in identifying gaps in the existing benchmark suites. Fig. 9
shows the dendrogram of the ensemble with ten clusters
formed and color coded. Parboil has applications represented
in nine out of the ten clusters in Fig. 9 whereas SHOC
has representation in only four clusters and Rodinia in five.
This shows that SHOC and Rodinia has more gaps when
compared to Parboil. Table XI also shows the impact of
changing the number of clusters on the representativeness
of the various benchmark suites. In general, Parboil shows
the most diversity, followed by Rodinia, and then SHOC.

TABLE XI: Coverage of existing benchmark suites

SHOC - Three out of six
Six clusters Rodinia - Four out of six

Parboil - Six out of six
SHOC - Three out of eight

Eight clusters Rodinia - Four out of eight
Parboil - Eight out of eight
SHOC - Four out of ten

Ten clusters Rodinia - Five out of ten
Parboil - Nine out of ten

Observation 7: Parboil shows the most coverage among
Parboil, Rodinia, and SHOC.

Based on the above study, we make recommendations for
filling in the “gaps” found in the three benchmark suites.
These recommendations are summarized in the Table. XII.
Boldfaced applications in the table are the recommended
applications to be included from other sources in order to
improve the corresponding suite’s diversity.
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Sort(S)

Fig. 9: Diversity analysis for all benchmark suites put to-
gether to identify opportunities for expansion. SHOC appli-
cations are denoted by (S), Parboil by (P), and Rodinia by
(R).

VI. CONCLUSION

In this paper, we developed a framework for subsetting
GPGPU workloads using conventional techniques such as
PCA and hierarchical clustering. We identified a set of met-
rics for GPGPU workloads that could be used for the above
task. We validated our framework and choice of metrics using
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TABLE XII: Expanding existing benchmark suites

SHOC Sort, BFS, GEMM, SpMV (vector), Stencil3D,
LBM, TPACF, MatMul, MRI-G, CutCP (all
from Parboil)

Rodinia Hotspot, Backprop, CFD, LUD, StreamCluster,
SAD, Stencil3D, MatMul, MRI-G, CutCP (all
from Parboil)

Parboil LBM, BFS, TPACF, Stencil3D, SAD, SGEMM,
MRI-G, CutCP, Histo, Backprop (Rodinia)

speedup results that were independently reported to SPEC.
The results showed that our methodology worked better than
the random subsetting approach. The cross-platform results
highlighted the need for architecture-independent metrics in
such a study which is left for future exploration. We showed
that all benchmark suites had something unique to offer in
the evaluation space. Similarly, no benchmark suite covered
the entire spectrum of benchmark applications. Keeping the
above in mind, researchers should adopt a methodological
approach to choose an appropriate set of applications for
evaluating their proposed techniques.
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