IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), Colombia, May 2016.

Online Power Estimation of Graphics Processing Units

Vignesh Adhinarayanan, Balaji Subramaniam, Wu-chun Feng
Department of Computer Science, Virginia Tech
Email: avignesh@vt.edu, balaji @cs.vt.edu, wieng@vt.edu

Abstract—Accurate power estimation at runtime is essential
for the efficient functioning of a power management system.
While years of research have yielded accurate power models
for the online prediction of instantaneous power for CPUs, such
power models for graphics processing units (GPUs) are lacking.
GPUs rely on low-resolution power meters that only nominally
support basic power management. To address this, we propose
an instantaneous power model, and in turn, a power estimator,
that uses performance counters in a novel way so as to deliver
accurate power estimation at runtime.

Our power estimator runs on two real NVIDIA GPUs to
show that accurate runtime estimation is possible without the
need for the high-fidelity details that are assumed on simulation-
based power models. To construct our power model, we first
use correlation analysis to identify a concise set of performance
counters that work well despite GPU device limitations. Next, we
explore several statistical regression techniques and identify the
best one. Then, to improve the prediction accuracy, we propose
a novel application-dependent modeling technique, where the
model is constructed online at runtime, based on the readings
from a low-resolution, built-in GPU power meter.

Our quantitative results show that a multi-linear model, which
produces a mean absolute error of 6%, works the best in practice.
An application-specific quadratic model reduces the error to
nearly 1%. We show that this model can be constructed with
low overhead and high accuracy at runtime. To the best of
our knowledge, this is the first work attempting to model the
instantaneous power of a real GPU system; earlier related work
focused on average power.

I. INTRODUCTION

Today’s high-performance computing (HPC) clusters are
power-limited, and this trend is expected to continue for the
foreseeable future. For instance, an exascale system projected
to arrive in 2022 is expected to operate under a strict 20-
megawatt power envelope [1], [2]. Realizing the above target
will require a nearly 30-fold increase in performance with only
a 1.2-fold increase in power consumption. As a consequence,
the HPC community seeks to exploit both software and
hardware innovations to meet the exascale goal.

Traditionally, on the software side, a runtime system man-
ages the system power consumption [3], [4]. Power models
play a vital role in the efficient functioning of such runtime
systems by estimating the instantaneous power consumption
of the system. While power mefers provide the same benefit,
power models go significantly beyond in that they enable a
number of energy-management techniques, as explained in
Section II.

On the hardware end, graphics processing units (GPUs)
offer high performance and better energy efficiency than tradi-
tional CPU-only systems [5]. As a result, the HPC community
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Fig. 1: Systems using accelerators in the Green500 lists

has embraced the use of GPUs in their quest to build energy-
efficient systems, as exemplified by the Green500 list (see
Figure 1) [6]. However, the proliferation of GPUs in HPC
systems has exposed the community to challenges in modeling
the power consumption of GPUs.

Though extensive CPU studies have led to some conver-
gence on the power models used for CPU systems, the commu-
nity is yet to understand the models required to estimate GPU
power consumption. For example, linear models are widely ac-
cepted to be suitable for estimating CPU power consumption.
Such acceptance is not established for GPUs. Some researchers
have shown that linear regression-based techniques are suitable
for GPU architectures [7] while others argue that such models
may be insufficient to capture the complexities of a modern
GPU architecture [8]. Moreover, the conclusions drawn from
these studies are based on experiences gained in estimating the
average power consumption. However, for these models to be
useful in a runtime system, they should predict instantaneous
power and should possess the following properties:

e Accuracy: The models have to estimate instantaneous
power consumption accurately (less than 5% error rate)
and track power-phase changes so that a runtime system
can make correct decisions for power management.

e Overhead: Given the premium on performance in an
HPC system, estimating the power consumption should
not adversely affect the performance of the system under
consideration. Therefore, monitoring system activity and
predicting power should incur minimal overhead (not
more than 1%).

Limitations of existing GPU power models: While a number
of GPU power models have been explored recently, they all
suffer from one of the following limitations.
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1) They require multiple application runs and work only
offline [7]-[11]. This renders the model unusable in a
runtime system.

2) They work only in a simulator as the parameters used in
these models cannot be measured on a real system [12],
[13].

Contributions: Considering the above limitations in existing
GPU power models and the previously described requirements
for runtime power models, we make the following contribu-
tions in this paper:

o We present the first realization of an instantaneous power
model for GPUs that is capable of providing live, runtime
power estimates on real hardware.

— Towards achieving the above, we perform a rigorous
comparison of five types of statistical models.

— To improve the model’s accuracy, we introduce
temperature-awareness to the model. While common
in low-level models, modeling the temperature ef-
fects is generally lacking even in the well-studied
higher-level CPU power models that are based on
performance counters.

o To improve the accuracy of the instantaneous GPU power
model, we introduce the notion of application-dependent
models. To make this practical, we propose and evaluate
the following two techniques:

— We construct the power model from a smaller prob-
lem size to minimize the per-application data collec-
tion and modeling overhead.

— Alternatively, we could construct these power models
online at runtime using the GPU’s built-in power
sensors for feedback. Our evaluation of both these
proposals show promising results with a mean abso-
lute error rate of 1% and negligible overhead.

o Finally, we build and evaluate architecture-independent,
portable models for estimating power across platforms.

Our major findings include the following:

« In the case of application-independent models, multiple
linear regression produces the highest accuracy with a
mean absolute error rate less than 6% for both microar-
chitecture generations of NVIDIA GPUs under consider-
ation.

o Temperature plays a significant role in determining the
power consumed by the GPU. For all models evaluated,
introducing temperature awareness improved the predic-
tion accuracy.

o Application-dependent models give significantly higher
accuracy with a mean absolute error rate of nearly 1%
for both GPUs using quadratic models. Our results also
reveal that the penalty of using a quadratic model is
higher when sufficient information is not available.

e Only a minimal number of samples (one hundred as
determined by our experiments) is required to construct
an accurate application-dependent model at runtime. This
indicates that the model can be constructed at runtime
with a low overhead and high accuracy.

The rest of the paper is organized as follows. We motivate
our work in Section II. Section III discuses background
related to the hardware platforms, benchmark applications, and
statistical techniques used in this paper. Section IV describes
our methodology. We present our evaluation in Section V. Sec-
tion VI discusses the related work and Section VII concludes
our paper.

II. MOTIVATION

With the increasing prevalence of built-in power meters in
today’s high-end GPUs, it may seem that modeling instanta-
neous power is unnecessary. However, a performance counter-
based power model offers a few advantages over meters. For
instance, it is possible to estimate power consumption at a
granularity of 5000 Hz with a power model. In comparison, the
built-in meters available in the two platforms we study operate
at 60Hz and 1Hz. The high resolution offered by a power
model exposes more power- and energy-saving opportunities
to the runtime system.

Furthermore, in today’s power-constrained HPC clusters
where a node should quickly start operating at a lower
frequency when the allotted power budget is exceeded, these
power models are valuable. Using power models constructed
for different operating frequencies, the runtime system could
quickly determine a safe frequency in which a system should
operate. Thus, power models offer a one-shot reconfiguration
opportunity whereas using a power meter would mean a time-
consuming, iterative approach. The successful deployment
of Intel’s RAPL power models [14] and associated power
management schemes for CPU clusters clearly emphasizes the
model-based approach’s advantages [15]-[17]. In this work,
we focus only on estimating the GPU power for a given
voltage and frequency setting. Managing the power by shifting
to a different frequency is beyond the scope of this work.

III. BACKGROUND

In this section, we describe the hardware platforms, statis-
tical techniques, and the benchmark applications used.

A. Hardware Platforms

Our hardware platforms include two high-end NVIDIA
GPUs from different generations: (i) Fermi C2075 and (ii)
Kepler K20c. The relevant details of these platforms are
presented in Table I. Both these platforms are equipped
with built-in sensors to measure power and temperature and
have hardware counters to profile performance events (i.e.,
system activity). We reiterate that while power sensors help in
measuring instantaneous power, the power models go further
in enabling a number of energy management techniques as
explained in Section II.

Measuring Power and Temperature: Power and temper-
ature values reported by the built-in sensors can be ac-
cessed through the NVIDIA management library (NVML)
interface [18]. This interface provides a C-based thread-
safe API to monitor and manage the GPU. The correspond-
ing methods to measure instantaneous power consumption
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TABLE I: Hardware Details

[ Parameters [ Fermi C2075 | Kepler K20c |
# CUDA cores 448 2496
# SMs 14 13
Core frequency 1150 MHz 706 MHz
Memory size 6GB 5GB
Memory type GDDRS5 GDDR5
Memory frequency 1.5 GHz 2.6 GHz
Memory bandwidth 144 GB/s 208 GB/s
Peak DP performance | 515 GFlops 1170 GFlops
Total board power 215W 225W

and temperature are nvmlDeviceGetPowerUsage and
nvmlDeviceGetTemperature, respectively.

Profiling Performance Events: CUDA profiling tools in-
terface (CUPTI) is used to profile performance events by
configuring and querying the hardware performance counters
available in the NVIDIA GPUs [19]. There are 74 and 140
native performance events in C2075 and K20c, respectively.
However, only a small fraction of these events (between one
and eight, depending on the chosen events) can be profiled
simultaneously.

B. Statistical Methods

Regression techniques are normally used to establish the
relationship between two variables, a dependent variable y
(also known as the response) and an independent variable x
(also known as the predictor), through an unknown parameter
(. In our experiments, the response variable is the power
consumed and the predictors are the performance counters.
Regression modeling involves finding the best value for g,
given a modeling function f. Traditionally, the method of least
squares is used to find the value of .

Linear Models: In statistics, if the modeling function f is
linear in 3, then the model is considered linear. Thus, even
if the relationship between the dependent variable y and the
independent variable x is non-linear, a model falls under the
category of linear models as long as [ is linear. The linear
models explored in this paper are described below.

Simple Linear Model (SLR): In this model, the response
variable y, depends on a single predictor z. The basis function
can be written as y; = 8o+ S1x; +¢€, where € is the error term
that cannot be modeled empirically.

Multiple Linear Model (MLR): In a linear model, if the
dependent variable is related to more than one independent
variable, then it is called an MLR model.

Interaction Effects: Interaction terms must be included in a
model if two independent variables play a combined role on
the dependent variable and their effects cannot be separated.
Interaction effects are expressed through a third variable
which is the product of the two independent variables. In this
paper, we consider only second-order interaction effects (i.e.,
interaction between two variables only).

Quadratic Relationships: The MLR model may also include
higher-order variables which indicates a non-linear relation-
ship between the predictors and the response. In this paper,

we evaluate quadratic models in which the response depends
on the square of the predictors.

The mathematical basis functions of the MLR models evalu-
ated in this paper are presented below:

Basic MLR model without interaction (MLR)

Yi = Bo + B1w1i + Bawa; + €

Basic MLR model with interaction (MLR+I)

Yi = Bo + B1w1i + Pawa; + Prar1i72; + €

Quadratic model without interaction (QMLR)

yi = Bo + @1 + P13, + Boxai + Praa3; + €

Quadratic model with interaction (OQMLR+I)

Yi = Bo + Prx1; + Buﬁi + Boxg; + ﬁzzxgi + Brax1iwa; + €

Stepwise Regression: Sometimes, too many independent vari-
ables are considered for modeling. To eliminate the unneces-
sary ones, we use a statistical technique known as stepwise
regression. This technique alternates between two steps: (i)
forward selection and (ii) backward elimination. During the
forward selection step, the variable with the smallest p-valuel
is added to the model if this value is below a certain threshold.
Intuitively, this variable explains the most variation in the
modeling data. In the backward elimination step, among all
variables added to the model, the one with the largest p-
value is dropped if the value is above a certain threshold.
This indicates that the variable dropped does not significantly
affect the accuracy of the model. The algorithm terminates
when there are no more variables to be added or dropped.

C. Applications

Statistical modeling involves a training phase in which
the data is collected and the model is constructed and a
testing phase in which the prediction accuracy of the model
is evaluated. For our training phase, we chose workloads
that exhibit a variety of computational and communication
pattern representing a spectrum of application behavior. The
Level 1 applications (basic computational primitives) from
the SHOC benchmark suite [20] was appropriate for this
task. For the testing phase, we use applications from various
benchmark suites including Level 2 applications (full-fledged
applications) from SHOC, select CUDA SDK samples, LLNL
ASC proxy apps [21], and CUDA-equivalent SPEC ACCEL
benchmarks [22] from Rodinia [23] and Parboil [24]. A brief
description of the training and the testing applications is
presented in Tables II and III, respectively.

IV. METHODOLOGY
In this section, we describe our data collection methodology,
event selection technique, and model construction.
A. Data Collection

We modified all the applications to include a profiling
CPU thread that periodically measures instantaneous power
and board temperature via NVML and system activities via

Ip-value is a statistical metric that indicates whether a variable truly has
an effect on the response.
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TABLE II: Training Applications

[ Benchmark | Description [ Problem Size |

Stencil2D Standard two-dimensional nine-point stencil 4096x4096; 1000 iter; 100 pass

SpMV Sparse matrix-vector multiplication 12288x12288; 250pass

FFT Multiple two-dimensional fast Fourier transform 512-pt; 256MB; 1000 pass

GEMM Single and double precision matrix multiplication | 16KB sq. matrix; 50 pass

MD Pairwise calculation of Lennard-Jones potential 36864 atoms; 20000 pass

Reduction Sum reduction operation 64MB vector; 1000 pass

Triad Streaming vector dot product computation 16MB data; 1500 pass

Scan Parallel prefix sum algorithm 64MB data; 350 pass

Sort Radix sort algorithm 96MB data; 20000 pass

BFS Breadth-first search on an undirected graph 1000000 vertices; 1000 pass

TABLE III: Testing Applications
[ Benchmark | Source | Description [ Problem Size
LULESH LLNL Unstructured explicit shock hydrodynamics problem using Lagrangian methods 90 edges
S3D SHOC Computes rates of chemical reactions across regular 3D grid 48/40 edges; 2500pass
QTC SHOC Quality threshold clustering algorithm 26x1024
FWT SDK Computes product of a square data set and matrix of basis vectors 128 (Data), 32M (Kernel)
Eigen SDK Computes eigen values for a given matrix 32768x32768
NW Rodinia | Needleman-Wunsch - dynamic programming technique for aligning DNA sequences | 16384 seq; 20 pass
Hotspot Rodinia | Estimates processor temperature based on architectural floorplan and power mea- | 2048x2048, 4(ht) ; 60000 iter
surements
Histo Parboil Accumulates number of occurrences of each value 256Wx8192H
MRI-Q Parboil MRI image reconstruction from sampled radio responses 128x128x128
TPACF Parboil Two-Point Angular Correlation Function; measures distribution of massive bodies | 48589 pts; 100 pass
in space

CUPTI. This thread periodically looks up dedicated GPU
hardware registers for measurement and does not interfere with
normal GPU execution. The profiling interval was set to 20 ms
for the C2075 GPU and 1000 ms for the K20c GPU consider-
ing the capabilities of the power measurement infrastructure of
these systems.? The problem sizes for the different applications
were chosen to ensure that we collect enough data points for
model construction and testing. The relevant details for each
application is shown in Tables II and III.

B. Event Selection

Selecting the right predictors in a regression model plays an
important role in determining the accuracy of the model. While
all relevant events could be included to maximize the accuracy,
current GPUs have only a limited number of hardware counters
to profile events. Furthermore, several pairs of events cannot
be simultaneously profiled. This severely limits the number of
events that can be included in the model.

From several tens of available events, we select a concise
set to model power consumption. The selection is done in two
phases. In the first phase, we consider the events in isolation
to identify those exhibiting high correlation with power. In the
second phase, we consider the events in concert, identifying
non-redundant events that can be simultaneously profiled to
address device limitations.

The steps involved in the first phase are listed below:

1) We collect performance counters and power drawn for
each application-event pair by running the applications

2We chose 20ms for C2075 versus 1000ms for K20c as the latter has issues
with fine-grained power measurements as reported in [25].

multiple times.

2) We compute the Pearson’s correlation coefficient be-
tween performance counters and power for each applica-
tion individually, and for all the applications collectively.

3) We eliminate the events showing a low overall corre-
lation less than §. The value for § was set as 0.65
for C2075 and 0.55 for K20c by manually performing
sensitivity analysis to maximize accuracy.

4) From the remaining set of highly correlating events, we
eliminate those events that do not consistently show high
correlation across applications.

Events identified at the end of this phase are shown in
the form of a correlation heatmap for the two GPUs under
consideration in Fig. 2a and Fig. 2b.

Fig. 3 shows the algorithm used in phase two to determine
events that are ultimately included in the power model. In this
algorithm, the events are considered in decreasing order of
overall correlation, with the highest correlating event selected
first. For subsequent events, we check if they can be profiled
simultaneously with the events already selected. If so, such
events are included in the model only if they do not correlate
with any of the events selected prior. As a result, we eliminate
events that do not provide any new information.

The performance counters identified at end of this phase for
modeling power are described below:

e ACT_CYC: Number of cycles in which the GPU has at
least one active warp.

« DRAM-R: Number of read requests sent to DRAM.

o INST_ISS: Number of instructions issued.

o INST_EXE: Number of instructions executed.



IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), Colombia, May 2016.

erore [ N
o [ B
- B
verss [ S N
__— m IE
- N
o R
< N & Q >
Qg% <<<< @@ & &o\ c}”b\ 60‘\ § \"LO & S
on =) %@o
Q
(a) Correlation Heatmap for C2075
oo [ R
INST_ISS-
INST_EXE- .. i“ﬁ_o
0.5
L2-W (L1)- 00
-05
L)

oo

«
QQ ((({ ®® V§)é\§;\\o g N

€ &®

(b) Correlation Heatmap for K20c

Fig. 2: Correlation Heatmap. Performance counters showing
the highest overall correlation with power (in decreasing
order). Higher correlations are represented by darker shades
and lower correlations are represented by lighter shades.

Input: E (Set of events showing high correlation)
Output: S (Set of events to be included in the model)
Algorithm
S— @
for each event E; (in decreasing order of correlation) in set E
if E; can be simultaneously profiled with events in Set S, then

Calculate Pearson’s correlation coefficient p; between
E;and all events S;in Set S

if pj < Pmin for allj, then
S—SUE
end if
end if
end for

Fig. 3: Algorithm for event selection

e L2-R: Number of read requests sent to L2 cache.
o L2-W(L1): Number of write requests sent to L2 cache
from L1 cache.

Among these, only ACT_CYC, INST_ISS and INST_EXE
were selected for both the GPUs. The difference between
the two GPUs is that reads (DRAM-R, L2-R) correlated with

power on the C2075, whereas writes (L2-W (L1)) correlated
with power on the K20. The predictors used for the two GPUs
are shown in Table IV. We also consider portable models
constructed using only those counters that show high corre-
lation for both the GPUs under consideration. We consider
these models to evaluate the scope of architecture-independent
models.

TABLE 1IV: Predictors used in the models
[ Counter | C2075 | K20c [ Portable ]

ACT_CYC + + +
DRAM-R +
INST_ISS + + +
INST_EXE + + +
L2-R +
L2-W (L1) +

C. Modeling

We construct five different models: simple linear regression
(SLR), basic multiple linear regression (MLR), basic multiple
linear regression with interaction (MLR+I), quadratic multi-
ple linear regression (QMLR), and quadratic multiple linear
regression with interaction (QMLR+I). We also explore the
following approaches to construct the above five types of
models.

Application-Independent Models: Two distinct sets of work-
loads are used for the training and the testing phase as
described in Section III-C. From each workload used in the
training phase, we collect 150 power and performance counter
values to construct the model. This ensures adequate repre-
sentation of each application in the model construction and
avoids biasing the model towards longer running applications.
We use the 1m function available in the statistical software
R to construct the model. The intercept values are fixed at
83000 mW and 42000 mW for the C2075 and K20c GPUs
respectively. These values are the power consumed by the
GPUs in their active idle state. The predictors of these models
are the events identified in the event selection step. For the
MLR models, we further refine the model by using stepwise
regression to eliminate predictors that are not useful. To
achieve this, we use the stepAIC function in R.
Application-Dependent Models: To increase the accuracy
of the models, we explore application-dependent modeling.
However, constructing such a model involves a one-time cost
for each application. To reduce the cost, these models can be
constructed using small-sized problems that run only for a few
iterations.

Online Models: Our proposed technique for improving the ac-
curacy while negating the drawbacks of application-dependent
modeling involves the construction of a power model using
the GPU’s power sensors during the first few seconds of an
application’s execution. The power consumed by the rest of the
application is predicted from the model thus constructed. The
idea is to use a low-resolution power meter to construct a high-
resolution power model for fine-grained power management.
To test the feasibility of the approach, we study the sensitivity
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(i.e., accuracy) of the model with respect to the number of
samples (or data points), thereby determining the minimum
number of samples required to construct these application-
dependent models at runtime. A low number of samples
indicates that the model can be constructed quickly within
the first few seconds of an application’s execution.
Temperature-Aware Models: An initial analysis of the pre-
dicted values on the workloads used in the training phase
revealed that the accuracy steadily decreased with an ap-
plication’s execution time. This is because the long-running
applications increased the GPU’s temperature which in turn
affected the leakage power. To study the relationship between
temperature and power, we operated the GPU under different
temperatures. We performed this study by measuring the active
idle power after the execution of several stress workloads that
increased the GPU’s temperature. Fig. 4 shows this relation-
ship for the C2075 GPU. As evident from this figure, idle
power can be modeled as a linear function of temperature for
a realistic operating range. Therefore, in order to accommodate
the effect of the GPU temperature on power consumption,
we add temperature as a linear predictor to the models under
consideration.

100000 ~
95000 —

90000 —

85000 -

Power (in mW)

80000 —

60 70 80 90
Temperature (Celsius)

Fig. 4: Effect of temperature on idle power

V. RESULTS

In this section, we present the accuracy of the various
models in terms of mean absolute error percentage which
is calculated as follows. For every time slice (20ms for
C2075 and 1000 ms for K20c), the absolute error percentage
is calculated using the following equation:

|Estimated —Measured| £ 100

Error % = Measured

The mean absolute error for an application is then calculated
by averaging the values obtained across time slices.

A. Application-Independent Models

Table V summarizes the results obtained for the various
models on the target GPUs. The values presented in this
table are the geometric mean error across all the test appli-
cations. We make two observations that hold true for both
the GPUs: (i) temperature-aware models consistently produce
significantly higher accuracy compared to the basic models
and (ii) linear models produce the highest overall accuracy

with a mean error percentage of 4.49% on C2075 and 6.14%
on K20c.

TABLE V: Mean error % for application-independent models

C2075 K20c
Models | Basic [ Temp-aware | Basic | Temp-aware
SLR | 17.96 8.59 21.67 9.44
MLR | 11.59 4.49 18.66 8.29
MLR+I | 14.02 6.83 14.74 6.14
QMLR | 14.83 6.42 15.46 7.82
QMLR+I | 19.05 10.31 19.56 8.86

The coefficient terms for the best application-independent
models (i.e., MLR for C2075 and MLR+I for K20c) are
shown in Table VI. We observe that while modeling the
interaction terms helped in improving the accuracy for K20c,
their contribution towards overall power is small as indicated
by their disproportionately smaller coefficients. According to
these models, one degree Celsius increase in device tempera-
ture increased the power consumption by 0.4 W on the C2075
GPU and 0.58 W on the K20c GPU. This can be attributed to
the difference in transistor sizes: 40 nm for C2075 and 28 nm
for K20c. We note that the linear form of the equations and the
parameters used are similar to the CPU power models explored
in the past. This indicates the possibility of a generic power
model for heterogeneous systems which is worth exploring in
the future.

Next, we present the mean error percentage for the applica-
tions individually in Fig 5. We observe that even for the more
accurate temperature-aware linear models, certain applications
(e.g., Eigen, TPACF) exhibited high error. To understand
the nature of this high error, we present the estimated and
measured power profiles for QTC on C2075 and Eigen on
K20c in Fig. 6 and Fig. 7, respectively. These applications
were chosen for highlighting because they show both the
positives and the negatives of the models simultaneously. In
both the cases, we observe that the MLR model accurately
estimates the phase shifts in power, but not the exact power
values. If we subtract the estimated values by some constant
offset, the error percentage drops dramatically, for example
from 32% to 3% for Eigen on K20c. Our results indicate that
the application-independent models are robust predictors of
power-phase shifts for the workloads under consideration.

180000
~—~160000 -
z
~—140000
@
% 120000 4
a
100000 Power === Estimated Measured
1 1 1
40000 45000 50000 55000 60000
Time (ms)

Fig. 6: Application-Independent Models. Estimated and
measured power profiles for QTC on C2075.
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TABLE VI: Coefficient values for the best application-independent models

Device CYC I 1IE

DRAM-R L2-R L2-W L2-W*IE

C2075 -3.62E-04 | 4.91E-04 | 1.54E-03

6.03E-03 1.22E-03 - -

K20c 5.73E-05 | -8.42E-05 | 2.70E-05

2.50E-05 | 9.54E-14

L2-W#II | L2-W*CYC | CYC*IE

CYC*II

II*IE Constant | Temperature

8.30E+04 4.01E+02

8.23E-14 -1.41E-13 -3.99E-14

1.25E-13

-2.19E-15 | 4.20E+04 5.80E+02

C2075 - Basic Models

C2075 - Temp—aware Models

150+
100+

50+

ol
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Fig. 5: Application-Independent Models. Mean error % for applications shown individually for all evaluated models.
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Fig. 7: Application-Independent Models. Estimated and
measured power profiles for Eigen on K20c.

Cost of Portability: We evaluate portable models, by restrict-
ing the models to include only those events which have a
high correlation with power consumption on both the GPUs
under consideration. The error percentage achieved for these
models is shown in Table VII. We observe that the cost
of portability is quite high: the error percentage for linear
models increased from 4.49% to 8.22% on C2075 and from
6.14% to 9.40% on K20c. This shows that even for successive
generations of GPUs, portable models cannot be constructed

without sacrificing accuracy.

TABLE VII: Mean error % for portable models

C2075 K20c
Models | Basic | Temp-aware | Basic | Temp-aware
SLR | 17.96 8.59 21.67 9.44
MLR | 18.55 8.22 23.36 8.48
MLR+I | 18.26 11.15 22.84 9.40
QMLR | 16.76 11.24 22.27 9.23
QMLR+I | 18.36 11.63 20.87 8.79

Overhead: We observe an overhead of less than 0.1%
when we profile up to 5 performance counters (the maximum
used by our model) at a sampling frequency of S0Hz. Our
experiments reveal that profiling the performance counters
does not induce additional overheads on the GPU.

B. Application-Dependent Models

In this section, we evaluate if there are benefits to
using application-dependent models. We observe that the
application-dependent models exhibit higher accuracy than
the application-independent models as shown in Table VIII
and Table V; the mean error rate goes down from 4.49% to
1.02% for C2075 and from 6.14% to 0.88% for K20c. Among
the models evaluated, QMLR+I showed the highest accuracy.
However, the difference in accuracy is insignificant when
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Fig. 8: Application-Dependent Models. Mean error % for applications shown individually for all evaluated models.

compared to the relatively simpler MLR+I model. Compared
to application-independent models, these models are provided
with only the most relevant information as their training data.
This helps the more complex model in accurately estimating
the power consumption and not merely phase shifts as shown
in Fig. 9 and Fig. 10.

TABLE VIII: Mean error % for application-dependent models

C2075 K20c
Models | Basic | Temp-aware | Basic | Temp-aware
SLR | 7.32 2.26 3.39 1.49
MLR | 4.73 1.62 2.64 1.22
MLR+I 2.94 1.07 2.22 0.92
QMLR | 3.04 1.08 2.24 0.96
QMLR+I | 2.79 1.02 2.17 0.88
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Fig. 9: Application-Dependent Models. Estimated and mea-
sured power profiles for QTC on C2075.

The mean error of the various power models is shown
individually for each application in Fig. 8. In all the cases,
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Fig. 10: Application-Dependent Models. Estimated and mea-
sured power profiles for Eigen on K20c.

the application-dependent models give significantly better ac-
curacy compared to the application-independent models. How-
ever, applications such as LULESH and S3D show relatively
poorer accuracy compared to the rest of the applications.
This is because, these applications are composed of several
computational kernels with distinct characteristics whereas the
other applications are more homogeneous in nature. Such
applications may benefit by modeling each computational
kernel separately.

C. Constructing Power Models at Runtime

To achieve the high accuracy offered by the application-
dependent models, we have to go through the process of
constructing the model offline once for each application sep-
arately. This step can be avoided if we could construct the
application-dependent models at runtime. However, for such
models to be useful in a runtime system, model construction



IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), Colombia, May 2016.

should not introduce any significant overhead. This means only
a few samples may be used to construct the model using simple
techniques.

Sample-Size Sensitivity: We measured the sensitivity of MLR
to the number of samples used for training. Fig. 11 shows
the cumulative distribution function (CDF) plot for QTC on
C2075. The x-axis represents error percentage and the y-axis
represents the percentage of estimated values that falls below
a given error percent during the testing phase. Models were
constructed using the first 50, 100, 200, 400, and 800 samples
and tested for the entire duration of the application (which
consists of few thousand additional sample points). We observe
that the accuracy of the MLR model improves only marginally
when we use more than 100 samples.

1.00 - e e L N . o=
0.75 -
Samples
w 50
8 0.50 - 100
200
0.25 - + 400
= 800
0.00 -
1 1 1
0 10 20

Mean Error %
Fig. 11: Sample-size sensitivity for QTC

Fig. 12 shows sample-size sensitivity for the remaining
applications. We observe that the different applications require
different number of samples to accurately capture the charac-
teristics of the application. In general, about 100 sample points
are sufficient to construct an accurate model for scientific ap-
plications which produces no noticeable overhead. Therefore,
model construction is feasible at runtime as the overhead
is minimal and the accuracy obtained is high. However, for
applications having heterogeneous characteristics, such models
need to be adapted dynamically depending on the kernel being
executed.
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Fig. 12: Sample-size Sensitivity

VI. RELATED WORK

In this section, we describe the related work in GPU power
modeling and CPU power modeling that shaped our work.
GPU Power Modeling: Ma et al. were among the first to
model power consumption of a graphics processor. They use
support vector machines and achieve modest accuracy in pre-
dicting power [26]. However, these models are no longer ap-
plicable to general-purpose GPUs. Nagasaka et al. developed a
linear regression-based model to accurately estimate the aver-
age power consumed by a GPU kernel on a GeForce 285 GTX
GPU [7]. Abe et al. made the model architecture-agnostic but
the accuracy was greatly diminished [11]. Song et al. present
another model using artificial neural networks to estimate
average power consumption [8]. Ghosh et al. have explored
statistical techniques encapsulating non-linear relationship be-
tween power and performance event and have reported higher
accuracy than the purely linear models [9]. Kasichayanula et
al. estimate power of micro-architectural components on GPU
using an empirical activity-based model [10]. However, all
these works [7]-[11] use several counters requiring multiple
application runs and can predict the power consumption only
offline.

Hong and Kim present a detailed empirical model to

estimate the power consumed by GPU [27]. Constructing
such models require in-depth knowledge of the low-level
micro-architecture, making it difficult to use in practice.
GPUWattch [12] and PowerRed [13] are other GPU power
modeling works, both of which require extensive architecture
knowledge and low-level simulation. These power estimation
techniques for simulators cannot be directly ported to real
hardware that is available today due to the limitations of
hardware counters.
CPU Power Modeling: Bellosa was the first to show the
existence of a relationship between power consumption and
performance events [28]. This discovery resulted in several
works on instantaneous power prediction [29]-[31] and man-
agement [32], [33] for CPUs. In addition to adapting these
techniques for GPUs appropriately, we also had to overcome
limitations in GPU hardware profiling and software tools. Our
proposals to address these limitations included application-
specific and online modeling. We also systematically study
several models similar to the work done by Rivoire et al. [34]
and Davis et al. [35] for CPUs.

VII. CONCLUSION

In this work, we narrowed the knowledge gap between
GPU power models and the existing literature on CPU power
models. We found answers to previously unanswered ques-
tions regarding GPU power modeling. We identified system
activities that correlate with power consumption of GPU
systems. We found that apart from system activities, the device
temperature plays a major role in determining the GPU’s
power consumption. We found that linear functions involving a
few simple parameters are sufficient for highly accurate GPU
power models. Then, we showed that application-dependent
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models are highly accurate and useful. Finally, we showed that
such models can be constructed at runtime with low overhead
and high accuracy.
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