
SENSEI / SENSEI-Lite / SENEI-LDC

Updates

Chris Roy and Brent Pickering

Aerospace and Ocean Engineering Dept.

Virginia Tech

July 23, 2014

2

Collaborations with Math

Collaboration on the implicit SENSEI-LDC code

• Focus is on solvers and preconditioners

• Maximum efficiency is found when considering interactions between:

matrix storage format, memory use, hardware, preconditioner, solver

• K. Swirydowicz, E. de Sturler, X. Xu, and C. J. Roy, “Fast Solvers and

Preconditioners,” SIAM Annual Meeting, Chicago, IL, July 7-11, 2014

Collaboration on SENSEI

• SENSEI uses modern Fortran, but includes ISO-C bindings so we can

interface with existing solvers in C

• SENSEI uses a built in CPU solver library (Fortran), but has recently

been extended towards GPU functionality using the CUDA ITSOL

interface (C); this is the same interface used by de Sturler’s group

• The folks in Math should now have access to the SENSEI GIT repository

3

Collaborations with CS

Collaboration w/ Feng’s group: SENSEI-LDC and SENSEI

• Worked with Tom Scogland to get explicit SENSEI-LDC code running on

multiple GPUs (AIAA Paper, journal submission in progress)

• Developed plan for GPU-parallelizing SENSEI using OpenACC

• B. P. Pickering, C. W. Jackson, T. R. W. Scogland, W.-C. Feng, and C. J. Roy, “Directive-

Based GPU Programming for Computational Fluid Dynamics,” AIAA Paper 2014-1131, 52nd

Aerospace Sciences Meeting, National Harbor, MD, January 13-17, 2014

Collaboration w/ Sandu’s group: SENSEI-Lite

• Developed a MATLAB version of SENSEI: the “real” SENSEI-Lite

• Current code capabilities: structured grid, general geometry, finite volume

method, single block, inviscid, and explicit solver

• Upcoming capabilities: viscous (Navier-Stokes) & implicit w/ full Jacobian

• Sandu’s group currently has access to code through github

• Sandu’s group will use the implicit code for studying their IMEX and

ROK/EXPK schemes for time accurate simulations

4

Publications

Published:

• B. P. Pickering, C. W. Jackson, T. R. W. Scogland, W.-C. Feng, and C. J. Roy, “Directive-

Based GPU Programming for Computational Fluid Dynamics,” 52nd AIAA Aerospace

Sciences Meeting (SciTech), National Harbor, MD, January 2014.

• J. M. Derlaga, T. S. Phillips, and C. J. Roy, “SENSEI Computational Fluid Dynamics Code:

A Case Study in Modern Fortran Software Development,” AIAA Paper 2013-2450, 21st

AIAA Computational Fluid Dynamics Conference, San Diego, CA, June 2013.

• B. P. Pickering, Evaluating the OpenACC API for Parallelization of CFD Applications, MS

Thesis, Aerospace and Ocean Engineering Dept., Virginia Tech, June 2014.

• K. Swirydowicz, E. de Sturler, X. Xu, and C. J. Roy, “Fast Solvers and Preconditioners,”

SIAM Annual Meeting, Chicago, IL, July 7-11, 2014.

To be submitted very soon:

• B. P. Pickering, C. W. Jackson, T. R. W. Scogland, W.-C. Feng, and C. J. Roy, “Directive-

Based GPU Programming for Computational Fluid Dynamics,” manuscript in preparation for

submission to Computers and Fluids, August 2014.

• J. M. Derlaga, T. S. Phillips, and C. J. Roy, “SENSEI Computational Fluid Dynamics Code:

A Case Study in Modern Fortran Software Development,” manuscript in preparation for

submission to the Journal of Aerospace Computing, Information, and Communication,

August 2014.

5

Plans for Upcoming Year

SENSEI-LDC

• Publish article with de Sturler’s group on preconditioners/solvers for GPU

• Collaborate w/ Meuller’s group on MemTrace (explicit and implicit codes)

SENSEI-Lite

• Complete code development to include viscous terms & implicit Jacobian

• Collaborate with Sandu’s group on time accurate solutions

• Collaborate with de Sturler’s group on preconditioners/solvers

SENSEI

• Improve general preconditioners/solvers and implementation on GPU w/

de Sturler’s group

• Develop strategy for handling function pointers and allocatables within

OpenACC w/ Feng’s group

• Implement OpenACC directives in SENSEI code base w/ Feng’s group

6

Additional work with incompressible
Navier-Stokes (INS) finite-difference code.

• RECAP:

– 2D Cartesian grid FDM.

– Solves incompressible Navier-Stokes
using artificial compressibility (lid-driven
cavity benchmark case).

– Ported from an existing Fortran code to
run on GPUs using OpenACC + PGI
compiler.

• Recent work focused on
performance optimization of the
OpenACC code and running on
multiple GPUs.

• Newer versions of PGI compiler
(14.x) support additional accelerator
platforms, including AMD GPUs.

Above: Speedup of INS code on several GPU

platforms relative to a single CPU thread (SSE

vectorized) running on a Xeon X5560.

0

5

10

15

20

25

30

35

OpenACC
(NVIDIA
C2075)

OpenACC
(NVIDIA
K20C)

OpenACC
(NVIDIA
K20X)

OpenACC
(AMD 7990

(1 of 2
dies))

S
p

e
e
d

u
p

7

Optimization of OpenACC using
gang/worker/vector clauses

• Can use OpenACC clauses to
control the kernel launch
configuration on NVIDIA devices.

– For CUDA accelerators, OpenACC vector
parameter corresponds to the number of
CUDA threads in a block.

– Enables application specific tuning.

• Explored entire parameter space of
possible 2D thread-block
dimensions.

– Tested both Fermi (C2075) and Kepler
(K20) GPUs, using double and single
precision arithmetic.

– On all platforms, the default block size
(when no vector clause was used) was
observed to be 64x4.

– Manual tuning showed performance
increases ranging from 6-33% on the
different GPUs. The compiler default was
never found to be optimal.

Above: Optimization results for a K20c GPU using double

precision.

 Default: 64x4 threads/block 68.5 GFLOPS

 Optimal: 16x8 threads/block 90.6 GFLOPS

8

Multi-GPU Scaling

• Near linear performance scaling using multiple-GPUs.

– Used domain decomposition, with each domain partition residing on one GPU for the
duration of the simulation (only ghost-cells had to be exchanged on each iteration).

– One control CPU thread per GPU.

– PGI 14.1 compiler can generate code for AMD GPUs in addition to NVIDIA.

0

50

100

150

200

250

1 2 3 4

P
e
rf

o
rm

a
n

c
e
 (

G
F

L
O

P
S

)

Number of GPUs

NVIDIA
c2070

NVIDIA
k20x

AMD 7990

9

Matlab framework for studying high-order
time-integration methods

• Code is based directly on the

SENSEI CFD code (same

numerical methods).

• 2D, single-block structured grid

FVM.

• Written with “mex” files (C++) for

better performance.

• Splits the RHS flux contributions to

facilitate working with IMEX

schemes.

– E.g., split equations into convective +

diffusive components.

• Goal: Full LHS(Jacobian) + RHS

equation splitting to enable

testing of general time-accurate

methods.

Above: Solution from Matlab CFD code for NACA 0012

at Mach 0.8, 5⁰ AOA.

