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Challenges to solving large evolutionary PDEs

and co-design solution approaches |
Numerical approaches that allow the use of different strategies for different
components are essential for multiphysics and multiscale systems.

» Multiphysics: additive
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Challenges to solving large evolutionary PDEs
and co-design solution approaches Il

1. Explicit time stepping: simple, scalable, CFL bounded
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2. Implicit time integration:
» Unconditionally stable — step size determined by accuracy only
» Huge nonlinear systems coupling all variables in the model at each time step
» Error estimation and step size control lead to additional data dependencies
3. Our algorithmic co-design goals:

» Identify and use minimal amount of implicitness
» Use only operations that are scalable/amenable to acceleration
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Implicit-explicit approach

IMEX splittip

Figure: Consider o' = f(t,v) + g(t, ).
Separate the stiff processes from the non-stiff processes and use implicitness to treat
the stiff processes only: IMEX methods
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The new K-methods perform implicit integration in a
Krylov subspace meant to capture the stiff dynamics

Figure: K-methods separate the small stiff subspace from the non-stiff subspace and
use implicitness in the stiff subspace only: ROK, EXPK methods
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Rosenbrock methods require (only) the solution of
linear systems — in full space

» Initial value problem (semi-discrete PDE)

Y(t)=fy), ylto) =vo, to<t<tr, y(t),f(y) €eR".

» Solution by an s-stage Rosenbrock method:

i—1 i—1
I—=hyJn)ki=hf (yn + Zaijkj) +hd, Z%‘jkj )

=1 =1
S
v =yo+ Y _biki.
=1

» The Jacobian matrix, J,, = df/dy |,_,
» Solves linear systems in full space .

appears explicitly.
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Rosenbrock-Krylov methods solve linear systems in a
reduced space

Arnoldi: compute H and V for Ks (I, fr)

fori=1tos
i1
Fy=fya+) aik
=1
i =V
i1
Ai = (Inpsar — hyH) ™! | by + hHE Z%‘j)\j
=
ki =V + h(F, — V)
end for i
Ynt+1 = Yn + Zbi ki

i=1
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Accuracy of ROK methods

» Krylov approximation property reduces the set of relevant trees

» ROK conditions up to order three = ROS conditions

» There is one additional T'K-tree and ROK condition for order four
l m

J Asr fFEu A M | S bvisokmom = 0

Theorem (Type 1 order conditions)

A Rosenbrock-K method of type 1 has order p iff the underlying Krylov space
has dimension M > p, and the following order conditions hold:

D bigy(t) = % VteT withp(t) <p,

J
S bigi(t) =0 VteTK\T withp(t) <p.
J
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Stability and convergence of ROK methods

For accuracy:
» M is small and independent of problem size.

For stability:

» Intuitively M should be sufficiently large such that the Krylov space
contains the stiff subspace of the underlying problem (see also Weiner et
al)

» How to automatically choose M so that the method is stable is a topic of
ongoing work.
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Exponential-Krylov methods compute matrix
exponential times vectors in small space

Arnoldi: compute H and 'V for K (3, fr)
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i—1
Fi=f{yn+ aijk
j=1
i =V [
1—1
Ai = p(hyH) | by + BHY i)
j=1
ki =V +h(F;— V)
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K-methods outperform traditional solvers on a two
dimensional shallow water test problem
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Figure: Performance comparison on shallow water equations using centered finite
differences on a 32 x 32 cartesian grid, N = 3072.
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Sensei-Lite experiment: flow development in vortex
shedding cylinder test case
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Time integration results on SENSEI-Lite
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Figure: Performance of time integrators with adaptive time stepping and varying

number of basis vectors on SENSEI-Lite
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New development: block-orthogonal ROK/EXPK

methods
» Construction of an orthogonal basis to the Krylov subspace is the primary
efficiency bottleneck.

» Solution: block orthogonal basis — orthogonalize every block (only)
against the first.

V=[ViVy...Vy], VIV,=6,1 VIV,=1I

» If we choose blocks of 4, the nth vector requires orthogonalization against
at most 8 vectors, as opposed to n — 1 vectors for a fully orthogonal basis.

» Implementation similar to a standard ROK method, except replacing H by
HVTV.

» Computing VTV replaces much of the cost of orthogonalization, but can
be much more easily parallelized since components can be computed in

any order.
» Basis vectors do not have to come from a standard Arnoldi iteration. May
reuse previous timesteps’ basis J5J&_, ... J¥ £ to capture stiff modes

inexpensively.
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IMplicit-EXplicit time stepping schemes

» Partition the system into two part based on stiffness y' = f(¢,y) + g(¢,y); treat
stiff part implicitly while nonstiff part explicitly
» Existing IMEX families:
e IMEX Linear Multistep Method (poor stability)
e IMEX Runge-Kutta methods (order reduction)
» Goal: to develop new IMEX Methods with several properties:
e no order reduction
e good stability
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IMEX General Linear Methods

A two-way partitioned GLM: (A, B) implicit, (A, B) explicit

Y, = (Zn,/f Y;) +Za”g >+y£n1], i=1,...,s,

j=1
g = h(i),,f +Zb,79 >+vayf U=,
j=1 j=1
Derivation: Assume
y=atz,2 = f@,2) = fle+2),7 =§(z,2) = gle+2),

we do not need to know what x and z are. It works as if the combined state y is
advanced through integration.

Starting procedure: Approximate h*z® (to), h* 2 (t), using finite differences on
small step solutions.
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Properties of IMEX GLMs

» High stage order. Order p, stage order ¢, number of external stages r,
number of internal stages s are related by p = ¢ =r = s.

» Implicit part is L-stable and constrained explicit stability region is
maximized using optimization technique. DIMSIMs are constructed with
Runge-Kutta stability.

» No additional coupling condition.

Theorem (Zhang and Sandu)

» Partitioned GLM has order p and stage order q = p { each
individual method has order p and stage order q = p.

» Partitioned GLM has order p and stage orderq =p — 1 { each
constituent method has order p and stage orderq = p — 1.
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IMEX GLMs on 3D compressible Euler equations |
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Evolution of the potential temperature for the 3D rising thermal bubble on the domain
[200, 800]2 x [—600, 0]. GMSH-DG code (UCLouvain): discontinuous Galerkin method of order 3
on a uniform grid for spatial discretization. The system has approximately 7 x 10* variables.
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IMEX GLMs on 3D compressible Euler equations |l
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(b) Work-precision (3D rising bubble)
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Linearly Implicit Runge-Kutta W (LIRK-W) methods |

» Split the initial value problem into linear and nonlinear parts

d
df?:LyHF(t,y)*Ly), to <t <tp, y(to)=yn;

y(t), F(t,y) eRY, LeRVN.
» Solution by an s-stage LIRK-W method:

i1 i1
I—hy;L)Yi=y,+h Z ai,jF(Yj)‘f‘hLZ Vi Y5
j=1 j=1

Uns1 =Y +h D> b F(Y;)+hL Y gV
j=1

Jj=1

» L ~ J, can be arbitrary; for stability it should capture stiff dynamics.

» For discrete 2D Laplacian let L, and L, be directional derivatives.
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Linearly Implicit Runge-Kutta W (LIRK-W) methods |l

» Approximate the linear system as

» The products are independent and so can be inverted in parallel.

» LIRK-W maintains obtains full order under such an approximation.
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Figure: Convergence of a third order LIRK-W method, applied to Allen-Cahn with
approximate matrix factorization
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Parallelizing ROK methods

» Parallel Burgers ODE function (local computation):
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The scalability of Jacobian-vector products is similar to
the scalability of the ODE function
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Figure: Speedups for evaluating the ODE function and Jacobian-vector products for

shallow water equations. OpenMP parallelization of two-dimensional shallow water
equations.
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Slowdown for multicore parallel solvers on a two
dimensional simulation of acoustic waves
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Figure: Slowdown of DIRK and ERK methods compared to the ROK solver. Tests
performed on a quad socket machine using AMD Magny-Cours CPUs with a total of 48
cores.
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Plans

v

Test various methods in Sensei Lite (Chris’ group)
(Need Jacobian-vector products!)
Run the winning methods on full Sensei (Chris’ group)

v

v

v

Automatic selection on the subspace dimension for stability (Eric)

Automatic implementation of accelerated Jacobian-vector products (Wu'’s
group)
Start working on compressible flows (Chris, Danesh)

v

v
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