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Challenges to solving large evolutionary PDEs
and co-design solution approaches I
Numerical approaches that allow the use of different strategies for different
components are essential for multiphysics and multiscale systems.

I Multiphysics: additive
partitioning
different physics have different
dynamics and integrators with
appropriate properties are
required

I Multiscale: component
partitioning
adaptive mesh refinement and
variable wave speed restrict
the global time step

UNC Applied Math, Sept. 16, 2011 
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Challenges to solving large evolutionary PDEs
and co-design solution approaches II

1. Explicit time stepping: simple, scalable, CFL bounded

Adaptive mesh refinement reduces spatial numerical 
errors; however, the global time step is also reduced 
Nitrogen monoxide error levels (vertically averaged) after one simulated week 

UNC Applied Math, Sept. 16, 2011 

Δt 

Δx 

2. Implicit time integration:
I Unconditionally stable→ step size determined by accuracy only
I Huge nonlinear systems coupling all variables in the model at each time step
I Error estimation and step size control lead to additional data dependencies

3. Our algorithmic co-design goals:
I Identify and use minimal amount of implicitness
I Use only operations that are scalable/amenable to acceleration
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Implicit-explicit approach

Full Jacobian

From function f()

← From function g()

IMEX splitting

Figure: Consider y′ = f(t, y) + g(t, y).
Separate the stiff processes from the non-stiff processes and use implicitness to treat
the stiff processes only: IMEX methods
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The new K-methods perform implicit integration in a
Krylov subspace meant to capture the stiff dynamics

Figure: K-methods separate the small stiff subspace from the non-stiff subspace and
use implicitness in the stiff subspace only: ROK, EXPK methods

Co-design of time stepping algorithms. Krylov-based methods. [6/26]
December 19, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Rosenbrock methods require (only) the solution of
linear systems – in full space

I Initial value problem (semi-discrete PDE)

y′(t) = f(y), y(t0) = y0, t0 ≤ t ≤ tF , y(t), f(y) ∈ RN .

I Solution by an s-stage Rosenbrock method:

(I− hγJn) ki = h f

yn +

i−1∑
j=1

αijkj

+ hJn

i−1∑
j=1

γijkj ,

y1 = y0 +

s∑
j=1

biki .

I The Jacobian matrix, Jn = ∂f/∂y |y=yn
appears explicitly.

I Solves linear systems in full space .
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Rosenbrock-Krylov methods solve linear systems in a
reduced space

Arnoldi: compute H and V for KM (Jn, fn)

for i = 1 to s

Fi = f

yn +

i−1∑
j=1

αijkj


ψi = VT fi

λi = (IM×M − hγH)
−1

hψi + hH

i−1∑
j=1

γijλj


ki = Vλi + h (Fi −Vφi)

end for i

yn+1 = yn +
s∑

i=1

bi ki
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Accuracy of ROK methods
I Krylov approximation property reduces the set of relevant trees
I ROK conditions up to order three ≡ ROS conditions
I There is one additional TK-tree and ROK condition for order four

j

k

l m

AJKf
K
LMf

LfM
∑
bjγjkαkmαkl = 0

Theorem (Type 1 order conditions)
A Rosenbrock-K method of type 1 has order p iff the underlying Krylov space
has dimension M ≥ p, and the following order conditions hold:∑

j

bj φj(t) =
1

γ(t)
∀ t ∈ T with ρ(t) ≤ p ,

∑
j

bj φj(t) = 0 ∀ t ∈ TK\T with ρ(t) ≤ p .
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Stability and convergence of ROK methods

For accuracy:
I M is small and independent of problem size.

For stability:
I Intuitively M should be sufficiently large such that the Krylov space

contains the stiff subspace of the underlying problem (see also Weiner et
al)

I How to automatically choose M so that the method is stable is a topic of
ongoing work.
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Exponential-Krylov methods compute matrix
exponential times vectors in small space

Arnoldi: compute H and V for KM (Jn, fn)

for i = 1 to s

Fi = f

yn +

i−1∑
j=1

αijkj


ψi = VT fi

λi = ϕ(hγH)

hψi + hH

i−1∑
j=1

γijλj


ki = Vλi + h (Fi −Vφi)

end for i

yn+1 = yn +
s∑

i=1

bi ki
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K-methods outperform traditional solvers on a two
dimensional shallow water test problem
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Figure: Performance comparison on shallow water equations using centered finite
differences on a 32× 32 cartesian grid, N = 3072.
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Sensei-Lite experiment: flow development in vortex
shedding cylinder test case
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Time integration results on SENSEI-Lite
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Figure: Performance of time integrators with adaptive time stepping and varying
number of basis vectors on SENSEI-Lite
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New development: block-orthogonal ROK/EXPK
methods

I Construction of an orthogonal basis to the Krylov subspace is the primary
efficiency bottleneck.

I Solution: block orthogonal basis – orthogonalize every block (only)
against the first.

V = [V1V2 . . .Vk] , VT
i V1 = δ1,iI, VT

i Vi = I

I If we choose blocks of 4, the nth vector requires orthogonalization against
at most 8 vectors, as opposed to n− 1 vectors for a fully orthogonal basis.

I Implementation similar to a standard ROK method, except replacing H by
HVTV.

I Computing VTV replaces much of the cost of orthogonalization, but can
be much more easily parallelized since components can be computed in
any order.

I Basis vectors do not have to come from a standard Arnoldi iteration. May
reuse previous timesteps’ basis Jk

nJ
k
n−1 · · ·Jk

1f1 to capture stiff modes
inexpensively.

Co-design of time stepping algorithms. Krylov-based methods. BOROK [15/26]
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IMplicit-EXplicit time stepping schemes

Full Jacobian

From function f()

← From function g()

IMEX splitting

I Partition the system into two part based on stiffness y′ = f(t, y) + g(t, y); treat
stiff part implicitly while nonstiff part explicitly

I Existing IMEX families:
• IMEX Linear Multistep Method (poor stability)
• IMEX Runge-Kutta methods (order reduction)

I Goal: to develop new IMEX Methods with several properties:
• no order reduction
• good stability
• ...

Co-design of time stepping algorithms. IMEX GLMs. [16/26]
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IMEX General Linear Methods

A two-way partitioned GLM: (Â, B̂) implicit, (A,B) explicit

Yi = h

(
i−1∑
j=1

ai,j f(Yj) +
i∑

j=1

âi,j g(Yj)

)
+ y

[n−1]
i , i = 1, . . . , s ,

y
[n]
i = h

(
s∑

j=1

bi,j f(Yj) +
s∑

j=1

b̂i,j g(Yj)

)
+

r∑
j=1

vi,j y
[n−1]
j , i = 1, . . . , r .

Derivation: Assume

y = x+ z , x′ = f̃(x, z) = f(x+ z) , z′ = g̃(x, z) = g(x+ z) ,

we do not need to know what x and z are. It works as if the combined state y is
advanced through integration.
Starting procedure: Approximate hkx(k)(t0), hkz(k)(t0), using finite differences on
small step solutions.

Co-design of time stepping algorithms. IMEX GLMs. [17/26]
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Properties of IMEX GLMs

I High stage order. Order p, stage order q, number of external stages r,
number of internal stages s are related by p = q = r = s.

I Implicit part is L-stable and constrained explicit stability region is
maximized using optimization technique. DIMSIMs are constructed with
Runge-Kutta stability.

I No additional coupling condition.

Theorem (Zhang and Sandu)
I Partitioned GLM has order p and stage order q = p m each

individual method has order p and stage order q = p.

I Partitioned GLM has order p and stage order q = p− 1 m each
constituent method has order p and stage order q = p− 1.

Co-design of time stepping algorithms. IMEX GLMs. [18/26]
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IMEX GLMs on 3D compressible Euler equations I

Evolution of the potential temperature for the 3D rising thermal bubble on the domain
[200, 800]2 × [−600, 0]. GMSH-DG code (UCLouvain): discontinuous Galerkin method of order 3
on a uniform grid for spatial discretization. The system has approximately 7× 104 variables.

Co-design of time stepping algorithms. Application of IMEX GLMs. [19/26]
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IMEX GLMs on 3D compressible Euler equations II
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Co-design of time stepping algorithms. Application of IMEX GLMs. [20/26]
December 19, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Linearly Implicit Runge-Kutta W (LIRK-W) methods I

I Split the initial value problem into linear and nonlinear parts

dy

dt
= Ly + (F (t, y)− Ly) , t0 ≤ t ≤ tF , y(t0) = yn ;

y(t), F (t, y) ∈ RN , L ∈ RN×N .

I Solution by an s-stage LIRK-W method:

(I− h γi,i L) Yi = yn + h

i−1∑
j=1

ai,j F (Yj) + hL

i−1∑
j=1

γi,j Yj ,

yn+1 = yn + h

s∑
j=1

bj F (Yj) + hL

s∑
j=1

gi Yj .

I L ∼ Jn can be arbitrary; for stability it should capture stiff dynamics.
I For discrete 2D Laplacian let Lx and Ly be directional derivatives.

Co-design of time stepping algorithms. LIRKW methods. [21/26]
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Linearly Implicit Runge-Kutta W (LIRK-W) methods II
I Approximate the linear system as

I− hγi,i L := (I− hγi,iLx) (I− hγi,iLy) .

I The products are independent and so can be inverted in parallel.
I LIRK-W maintains obtains full order under such an approximation.
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Figure: Convergence of a third order LIRK-W method, applied to Allen-Cahn with
approximate matrix factorization
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Parallelizing ROK methods
I Parallel Burgers ODE function (local computation):

f ip:jpn =
1

2∆x


(
y
ip−1
n

)2 − (yip+1
n

)2(
y
ip:jp−2
n

)2 − (yip+2:jp
n

)2(
y
jp−1
n

)2 − (yjp+1
n

)2
 , Jn v ≈

f(yn + εv)− f(yn)

ε

. . . . . . . . .

k k k

pi−1 pi pi+1

I Scalable Jacobian-vector product (local computation):

(Jn v)
ip:jp =

1

∆x

 y
ip−1
n vip−1 − y

ip+1
n vip+1

y
ip:jp−2
n vip:jp−2 − y

ip+2:jp
n vip+2:jp

y
jp−1
n vjp−1 − y

jp+1
n vjp+1



Co-design of time stepping algorithms. Scalability. [23/26]
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The scalability of Jacobian-vector products is similar to
the scalability of the ODE function
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Figure: Speedups for evaluating the ODE function and Jacobian-vector products for
shallow water equations. OpenMP parallelization of two-dimensional shallow water
equations.
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Slowdown for multicore parallel solvers on a two
dimensional simulation of acoustic waves
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Figure: Slowdown of DIRK and ERK methods compared to the ROK solver. Tests
performed on a quad socket machine using AMD Magny-Cours CPUs with a total of 48
cores.
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Plans

I Test various methods in Sensei Lite (Chris’ group)
I (Need Jacobian-vector products!)
I Run the winning methods on full Sensei (Chris’ group)

I Automatic selection on the subspace dimension for stability (Eric)
I Automatic implementation of accelerated Jacobian-vector products (Wu’s

group)
I Start working on compressible flows (Chris, Danesh)

Co-design of time stepping algorithms. The future. [26/26]
December 19, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]


	Title
	Personnel
	Challenges
	Krylov-based methods
	Rosenbrock
	ROK
	EXPK
	SWE experiments
	Sensei-Lite experiments
	BOROK

	IMEX GLMs
	Application of IMEX GLMs
	LIRKW methods
	Scalability
	Multicore Results
	The future

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	0.50: 
	0.51: 
	0.52: 
	0.53: 
	0.54: 
	0.55: 
	0.56: 
	0.57: 
	0.58: 
	0.59: 
	0.60: 
	anm0: 


