
ScalaMemAnalysis: A Compositional Approach to Cache
Analysis of Compressed Memory Traces

Saransh Gupta
under the guidance of

Dr. Frank Mueller

● ScalaMemTrace Background
● ScalaMemTrace Re-design
● ScalaMemAnalysis Design (Under Development)
● LDC Code Comparison(Serial & OpenMP)

○ SMT/SMA vs Dinero IV
■ Cache Simulation Time Comparison
■ Cache Hit Comparison

● Future Work

Outline

ScalaMemTrace (prior work at NCSU):
● Creates compressed traces of memory accesses

○ Uses the PIN tool (a binary instrumentation tool)
○ instruments all load and stores made by an application to memory
○ memory access has a unique signature
○ computed using a stack-walk

■ criteria for recognizing patterns
● PIN Compressor compresses trace file.
● Compressed trace file contains:

○ Regular Section Descriptors (RSD):
■ Address Accessed
■ Signature
■ Stride
■ Type of access

○ Power RSD (PRSD):
■ Length of loop
■ Loop iteration count

Background - ScalaMemTrace

● Data structures with varied stride at different loop levels recorded for uni-processor.
○ Multi-threaded program’s compression ignore different loop levels

● Support for more than one level of stride for uni-processor
○ nested loops are recorded inaccurately as single loops for multi-threaded programs

while compressing.
● Currently, working on addition of data structures on inter-thread and inter-node level

○ support for stride information per loop level.
○ Criteria for match includes

■ signature match
■ stride match

● Now would be possible to accurately record nested loops
○ with stride information per loop level

ScalaMemTrace Redesign (Multi-Threaded Support)

Workflow for MultiThreaded Version

Per-Thread Approach:
- Collect individual traces
- Run multiple instances of

SMT and pipe traces
threadwise.

- Pipe threadwise traces into
respective SMA.

All Threads Integrated Analysis:

- Collect one integrated raw
trace.

- Compress using SMT that
compresses the raw trace into
one compressed trace.

- SMA analyses patterns
considering the thread-id’s as
well.

MultiThreaded Extension : All Threads Integrated Analysis
● Reuse Distance Algorithm - Distance\Iteration(Thread-wise) between two similar PRSD’s.
● Analyse the final merged trace from SMT

○ SMT compresses all the inter-thread traces on a node into one trace file.
■ EPRSD’s contain additional loops.
■ No additional data structures required.
■ Additional conditional checks for multi level strides added.

○ SMT compresses the inter-node traces into one final trace file.
■ EPRSD’s contain another level of abstraction.
■ Radix tree like structure used while compression.

● Identify patterns using context based reuse distance, node-id and thread-id.
● Extrapolation can be done with ease.

○ Weak Scaling: Number of threads as well as problem size increases.
○ Strong Scaling: Problem size constant but increasing thread count.

ScalaMemAnalysis: Multi-threaded Extension
(Under Development)

• PGI Compiler
• Varying x-y input from 8x8 to 64x64
• SMA simulation takes less time as compared to Dinero.

Cache Simulation Time Comparison of LDC Code: Serial
(SMT/SMA vs Dinero IV)

Cache Simulation Time Graph

● The number of hits reported by Dinero are considerable to SMA.

Cache Hit Comparison of LDC Code: Serial
SMT/SMA vs Dinero IV

Matrix Size 8x8 16x16

Dinero 4172 4341

SMA 4071 4565

• The behavior of raw traces takes into account the memory references made by threads
between two parallel sections while waiting. We do not need them as they are not a part of
the memory references that the program makes.

• Working on a way to remove the recurring trace pattern of the threads while waiting to get
the sanitized raw traces.

Threadwise Cache Simulation Time Comparison of LDC
Code: OpenMP (SMT/SMA vs Dinero IV)

3184

35844 35844 -(11868+(2967 *2))*2

16228 16228 -(5332+(1331)*2)*2

25896 25896 -(8552+(2138)*2)*2

• Nishanth’s work on ScalaMemAnalysis Compositional Cache Analysis of Compressed
Memory Traces is under submission to ISPASS'15

• Implement multi-threaded SMT & SMA extensions capable of recording multi-stride
programs.

• Implement SMA Extrapolation Extension.
• Report large anomalies to users.
• Based on extrapolation, possible to provide theoretical performance predictions for large

number of threads, such as on a GPU.
• Improve accuracy of SMA. Better handling of holes.

Future Work

THANK YOU

