ScalaMemAnalysis: A Compositional Approach to Cache Analysis of Compressed Memory Traces

Saransh Gupta under the guidance of Dr. Frank Mueller

Outline

- ScalaMemTrace Background
- ScalaMemTrace Re-design
- ScalaMemAnalysis Design (Under Development)
- LDC Code Comparison(Serial & OpenMP)
 - SMT/SMA vs Dinero IV
 - Cache Simulation Time Comparison
 - Cache Hit Comparison
- Future Work

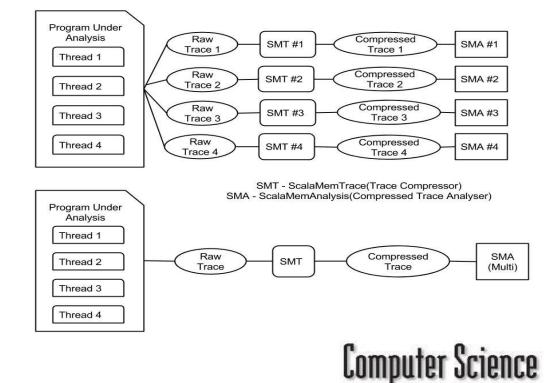
Background - ScalaMemTrace

ScalaMemTrace (prior work at NCSU):

- Creates compressed traces of memory accesses
 - Uses the PIN tool (a binary instrumentation tool)
 - instruments all load and stores made by an application to memory
 - memory access has a unique signature
 - computed using a stack-walk
 - criteria for recognizing patterns
- PIN Compressor compresses trace file.
- Compressed trace file contains:
 - Regular Section Descriptors (RSD):
 - Address Accessed
 - Signature
 - Stride
 - Type of access
 - Power RSD (PRSD):
 - Length of loop
 - Loop iteration count

ScalaMemTrace Redesign (Multi-Threaded Support)

- Data structures with varied stride at different loop levels recorded for uni-processor.
 - Multi-threaded program's compression ignore different loop levels
- Support for more than one level of stride for uni-processor
 - nested loops are recorded inaccurately as single loops for multi-threaded programs while compressing.
- Currently, working on addition of data structures on inter-thread and inter-node level
 - support for stride information per loop level.
 - Criteria for match includes
 - signature match
 - stride match
- Now would be possible to accurately record nested loops
 - with stride information per loop level


Workflow for MultiThreaded Version

Per-Thread Approach:

- Collect individual traces
- Run multiple instances of SMT and pipe traces threadwise.
- Pipe threadwise traces into respective SMA.

All Threads Integrated Analysis:

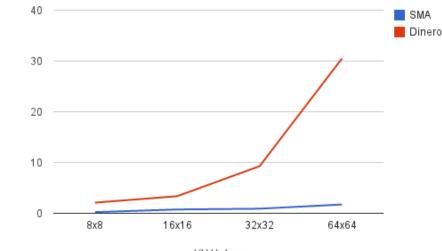
- Collect one integrated raw trace.
- Compress using SMT that compresses the raw trace into one compressed trace.
- SMA analyses patterns considering the thread-id's as well.

NC STATE UNIVERSITY

ScalaMemAnalysis: Multi-threaded Extension (Under Development)

MultiThreaded Extension : All Threads Integrated Analysis

- Reuse Distance Algorithm Distance (Iteration (Thread-wise) between two similar PRSD's.
- Analyse the final merged trace from SMT
 - SMT compresses all the inter-thread traces on a node into one trace file.
 - EPRSD's contain additional loops.
 - No additional data structures required.
 - Additional conditional checks for multi level strides added.
 - SMT compresses the inter-node traces into one final trace file.
 - EPRSD's contain another level of abstraction.
 - Radix tree like structure used while compression.
- Identify patterns using context based reuse distance, node-id and thread-id.
- Extrapolation can be done with ease.
 - Weak Scaling: Number of threads as well as problem size increases.
 - Strong Scaling: Problem size constant but increasing thread count.



Cache Simulation Time Comparison of LDC Code: Serial (SMT/SMA vs Dinero IV)

Time(s)

Input XY	Raw Trace (MB)	Dinero IV Trace(MB)	SMT PRSD Trace(MB)
8x8	14	1.2	1.2
16x16	31	2.8	1.5
32x32	93	8.5	1.9
64x64	329	31	1.9

Serial LDC Code(Iteration = 10)

XY Values Cache Simulation Time Graph

- PGI Compiler
- Varying x-y input from 8x8 to 64x64
- SMA simulation takes less time as compared to Dinero.

Cache Hit Comparison of LDC Code: Serial SMT/SMA vs Dinero IV

• The number of hits reported by Dinero are considerable to SMA.

Matrix Size	8x8	16x16
Dinero	4172	4341
SMA	4071	4565

Threadwise Cache Simulation Time Comparison of LDC Code: OpenMP (SMT/SMA vs Dinero IV)

Input XY (8x8)	# of Raw Trace References	Removing OMP Waiting Thread References	# of Raw Trace References
Thread 0	3184	3184 - 0	3184
Thread 1	35844	35844 -(11868+(2967 *2))*2	240
Thread 2	16228	16228 -(5332+(1331)*2)*2	240
Thread 3	25896	25896 -(8552+(2138)*2)*2	240

- The behavior of raw traces takes into account the memory references made by threads between two parallel sections while waiting. We do not need them as they are not a part of the memory references that the program makes.
- Working on a way to remove the recurring trace pattern of the threads while waiting to get the sanitized raw traces.

Future Work

- Nishanth's work on ScalaMemAnalysis Compositional Cache Analysis of Compressed Memory Traces is under submission to ISPASS'15
- Implement multi-threaded SMT & SMA extensions capable of recording multi-stride programs.
- Implement SMA Extrapolation Extension.
- Report large anomalies to users.
- Based on extrapolation, possible to provide theoretical performance predictions for large number of threads, such as on a GPU.
- Improve accuracy of SMA. Better handling of holes.

THANK YOU

