
Synergistic Co-Design of Hardware and Software for
Structured and Unstructured Grid Computations

E. de Sturler, W. Feng (PI), C. Roy, A. Sandu, D. Tafti

J. Edwards, H. Luo, F. Mueller

Air Force Office of Scientific Research (AFOSR) Basic Research Initiative
Transformational Computing via Co-Design of High-Performance Algorithms & HW

Computational Mathematics Program via Grant No. FA9550-12-1-0442
Program Manager: Fariba Fahroo

synergy.cs.vt.edu	

Vision

•  Synergistic co-design process for the
structured/unstructured grid motifs (or dwarfs)
in computational fluid dynamics (CFD)
to support aerodynamic predictions for
micro-air vehicles (MAVs).
–  Malleable and maintainable algorithms

… that can be mapped and optimized in software
… onto the right type of processing core in hardware
… at the right time
… to deliver multiplicative speed-up that would not have possible by
 Moore’s Law alone (e.g., 88x à 371x, as noted above)

–  Co-design feedback to vendors to guide future hardware design
–  Enabling of domain scientists and engineers to focus on their science

and engineering rather than the computer science and engineering

Algorithms
216x

Software
4x

Hardware
88x

N-body

Theoretical 1600x

371x

synergy.cs.vt.edu	

Why Synergistic Co-Design?

•  Exascale is coming … why worry?

System Attributes 2010 “2015” “2020”

System peak 2 Petaflops 200-300 Petaflops 1 Exaflop = 1000 Petaflops

Power 6 MW 15 MW 20-30 MW

System memory 0.3 PB 5 PB 32-64 PB

Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF

Node memory BW 25 GB/s 0.1 TB/sec 1 TB/sec 0.4 TB/sec 4 TB/sec

Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000)

System size (nodes) 18,700 50,000 5,000 1,000,000 100,000

Total Node
Interconnect BW

1.5 GB/s 20 GB/sec 200 GB/sec

MTTI days O(1day) O(1 day)

Source: Kathy Yelick (Lawrence Berkeley National Laboratory)

synergy.cs.vt.edu	

GFLOPS “Shock”

synergy.cs.vt.edu	

HPCG / HPL
for TOP500

Supercomputers

Source: Jack Dongarra, Oak Ridge and http://tiny.cc/hpcg

synergy.cs.vt.edu	

The Context for Synergistic Co-Design
 Massive parallelism w/ increasing heterogeneity in computing resources

… across a wide variety of environments

NVIDIA GPU Intel Xeon Phi (MIC) Altera FPGA TI DSP

Debuted on

as GREENEST commodity
supercomputer in U.S.
(11/11)

Tianhe-2

Performance via Parallelism

•  2,508 CPU cores

•  187,264 GPU cores
•  ~ 6,000,000 threads

AMD APU

synergy.cs.vt.edu	

Heterogeneous Systems in HPC

•  Statistics
–  Four of the top 10 systems
–  Performance share in Top500 systems
 5% (2009) à 35% (2014)

•  HokieSpeed
–  CPU+GPU heterogeneous supercomputer

with large-scale visualization wall
–  Debuted as the GREENEST

 commodity supercomputer
 in the U.S. in Nov. 2011

Top 10 Source:
top500.org

Tianhe-2

HokieSpeed Viz Wall
(Eight 46” 3D HDTVs)

synergy.cs.vt.edu	

Heterogeneous Systems in HPC

Top 15 systems on are all GPU-accelerated.

synergy.cs.vt.edu	

Roadmap

•  Vision
•  Motivation
•  Approach: Synergistic Co-Design
•  Artifacts

–  Optimized CFD Codes
–  CoreTSAR / AffinityTSAR
–  MetaMorph
–  MPI-ACC
–  VOCL: Virtual OpenCL

•  Achievements & Publications
•  Next Steps

Generalize, as presented at a
White House BIGDATA Event

in May 2013

Algorithms
216x

Software
4x

Hardware
88x

N-body

Algorithms Software

Hardware

Formalize for CFD
(structured & unstructured grid)

Co-Design & Associated Research Areas
Algorithms
216x

Software
4x

Hardware
88x

N-body

Performance
Programmability

Portability

Performance

•  Hardware always evolving.
•  Application software should

NOT have to change.
•  Co-designed hardware/software

ecosystem should automatically
adapt to new hardware

synergy.cs.vt.edu	

Synergistic Co-Design
from 10,000 Feet:

Performance Perspective

synergy.cs.vt.edu	

It’s More than Co-Design for Performance …
“Productivity = Performance + Programmability + Portability”

•  Programmability and Portability? Who Cares?
–  Five years from now, you will NOT know what hardware will look like.

§  Re-write software if code is not portable.

–  Case Study: Quantum Chemistry @ Stanford (~1,000,000 CUDA SLOC)*
§  What has Stanford been doing to get their code to run on other platforms?

•  Performance in the Context of Programmability and Portability
–  Hardware/Software Co-Design (No Change in Algorithm)

§  Automated optimization (-O3) à advanced manual optimization à
advanced automated optimization

–  Integrated Hardware/Software/Algorithm Co-Design
§  Manual co-design à automated co-design

* CU2CL: Automated CUDA-to-OpenCL Source-to-Source Translator could auto-translate the ~ 1,000,000
CUDA source lines of code (SLOC), which is part of our synergistic co-design ecosystem, but it only
addresses functional portability for now.

synergy.cs.vt.edu	

“Productivity = Performance + Programmability + Portability”

Most programmable
Most portable

Least programmable
Least portable

N-body
problem

20x

12x

175x

252x

160x

183x

885x

1,021x 1x

Least performance Most performance

Apply this approach to “Lid-Driven Cavity”?

synergy.cs.vt.edu	

“Productivity = Performance + Programmability + Portability”

Most programmable
Most portable

Least programmable
Least portable

N-body
problem

20x

12x

175x

252x

160x

183x

885x

1,021x 1x

Least performance Most performance

automate

Recall: Stanford has ~ 1,000,000 CUDA SLOC that they need
to translate to OpenACC/OpenMP or OpenCL

synergy.cs.vt.edu	

Roadmap

•  Vision
•  Motivation
•  Approach:

Synergistic Co-Design
•  Artifacts

–  Optimized CFD Codes
–  CoreTSAR / AffinityTSAR
–  MetaMorph
–  MPI-ACC
–  VOCL: Virtual OpenCL

•  Achievements & Publications
•  Next Steps

HokieSpeed Viz Wall
(Eight 46” 3D HDTVs)

Algorithms Software

Hardware

synergy.cs.vt.edu	

 Ecosystem for Heterogeneous Parallel Computing

Heterogeneous Parallel Computing Platform

Sequence
Alignment

Molecular
Dynamics

Earthquake
Modeling

Neuro-
informatics

Epidemiology Cybersecurity

MAVs

MANUAL CO-DESIGN

Manual
Co-Design

à
Automated
Co-Design

synergy.cs.vt.edu	

Targeted CFD Codes
SENSEI (C. Roy, Virginia Tech)

–  Structured, multiblock, 2nd order, finite-volume code
–  Artificial compressibility method
–  2nd-order spatial accuracy
–  Artificial compressibility (AC)

GenIDLEST (D. Tafti, Virginia Tech)
–  Structured, multiblock, 2nd order, finite-volume code
–  Pressure projection method
–  Arbitrary Lagrangian/Eulerian (ALE) and immersed boundary methods (IBM)

RDGFLO (H. Luo, NCSU)
–  Unstructured, discontinuous Galerkin (DG) method
–  High-order solution of compressible flows
–  ALE

INCOMP3D (J. Edwards, NCSU)
–  Structured, multiblock finite-volume code
–  Second or higher order spatial accuracy
–  ALE and IBM

Testbed Codes
•  Lid-Driven Cavity
•  SENSEI Lite

synergy.cs.vt.edu	

Incompressible Navier-Stokes (INS)
Finite-Difference Code

•  Recap
–  2D Cartesian grid FDM
–  Solves INS using artificial

compressibility (lid-driven cavity
benchmark case)

–  Ported from existing Fortran code
to run on GPUs using OpenACC +
PGI compiler

•  Recent work focused on
performance optimization of
OpenACC code and running on
multiple GPUs.

•  Newer versions of PGI compiler
(14.x) support more accelerator
platforms, including AMD GPUs.

Speedup of INS code on several GPU platforms
relative to a single CPU thread (SSE vectorized)
running on a Xeon X5560.

0

5

10

15

20

25

30

35

OpenACC
(NVIDIA
C2075)

OpenACC
(NVIDIA

K20C)

OpenACC
(NVIDIA

K20X)

OpenACC
(AMD 7990
(1 of 2 dies))

Sp
ee

du
p

Performance: Hardware/Software Co-Design

synergy.cs.vt.edu	

Optimization of OpenACC
using Gang/Worker/Vector Clauses

•  Can use OpenACC clauses to control
the kernel launch configuration on
NVIDIA devices.

•  Explored entire parameter space of
possible 2D thread-block dimensions.

–  Tested both Fermi (C2075) and Kepler
(K20) GPUs, using double- and single-
precision arithmetic.

–  On all platforms, the default block size
(when no vector clause was used) was
observed to be 64x4.

–  Manual tuning showed performance
increases ranging from 6-33% on the
different GPUs. The compiler default was
never found to be optimal.

•  Applying approaches to eliminate “brute
force” search à Starchart / Stargazer

Optimization results for K20c GPU using double precision.
 Default: 64x4 threads/block à 68.5 GFLOPS
 Optimal: 16x8 threads/block à 90.6 GFLOPS

Performance: Hardware/Software Co-Design

Courtesy: Brent Pickering & Chris Roy

synergy.cs.vt.edu	

Multi-GPU Scaling
•  Near-linear performance scaling using multiple GPUs.

–  Domain decomposition, with each domain partition residing on one GPU for
duration of simulation (only ghost cells had to be exchanged on each iteration).

–  One control CPU thread per GPU.
–  PGI 14.1 compiler can generate code for AMD GPUs in addition to NVIDIA.

0

50

100

150

200

250

1 2 3 4

Pe
rf

or
m

an
ce

 (
G

FL
O

P
S)

Number of GPUs

NVIDIA
c2070

NVIDIA k20x

AMD 7990

Two AMD GPUs from AMD Radeon 7990
vs. four NVIDIA C2070 GPUs

Performance: Hardware/Software Co-Design

synergy.cs.vt.edu	

Targeted CFD Codes
SENSEI (C. Roy, Virginia Tech)

–  Structured, multiblock, 2nd order, finite-volume code
–  Artificial compressibility method
–  2nd-order spatial accuracy
–  Artificial compressibility (AC)

GenIDLEST (D. Tafti, Virginia Tech)
–  Structured, multiblock, 2nd order, finite-volume code
–  Pressure projection method
–  Arbitrary Lagrangian/Eulerian (ALE) and immersed boundary methods (IBM)

RDGFLO (H. Luo, NCSU)
–  Unstructured, discontinuous Galerkin (DG) method
–  High-order solution of compressible flows
–  ALE

INCOMP3D (J. Edwards, NCSU)
–  Structured, multiblock finite-volume code
–  Second or higher order spatial accuracy
–  ALE and IBM

Testbed Codes
•  Lid-Driven Cavity
•  SENSEI Lite

Status of these codes
relative to co-design?

synergy.cs.vt.edu	

GenIDLEST: Manual GPU Optimization

0

20

40

60

80

100

120

140

160

180

200

To
ta

l T
im

e t
o

So
lu

tio
n

(s
)

Small (1xGPU)
Large (4xGPU)

1218

 Lower is Better!

← Older Newer →

← Domain Manual →
 Scientists Co-Design

1.29x

1.32x

5.75x

Example:
GPU-amenable
memory layout

Example: tree-based in-GPU
reduction; more memory changes;
sync relaxation

Not all approaches will
work well: kernels
need enough work to
amortize launch(es)

17.98x

Performance: Hardware/Software Co-Design

1 GPU: Reynolds 180, 64x64x64 grid, 90 iterations
4 GPU: Reynolds 395, 256x64x126 grid, 5 iterations

synergy.cs.vt.edu	

GenIDLEST: GPU Dot-Product Modifications

0

20

40

60

80

100

120

140

160

180

200

To
ta

l T
im

e t
o

So
lu

tio
n

(s
)

Small (1xGPU)
Large (4xGPU)

1218

 Lower is Better!

← Older Newer →

← Domain Manual →
 Scientists Co-Design

Performance: Hardware/Software Co-Design

synergy.cs.vt.edu	

Dot Product: Serial on CPU

1.  void dotProd(double *a,
2.  double *b,
3.  double *ret,
4.  int n_elem)
5.  {
6.  int i;
7.  *ret = 0.0;
8.  for (i = 0; i < n_elem; i++)
9.  ret += a[i] * b[i];
10. }

Serial C

HOST DEVICE

10

Programmability and Portability

synergy.cs.vt.edu	

Dot Product: Parallel on GPU Device using CUDA
HOST DEVICE (GPU)

1.  int main(int argc, char ** argv)
2.  {
3.  int n_elem;
4.  double *a, *b, *ret, sum = 0.0;
5.  //allocate and initialize a, b, and ret
6.  ...
7.  double *dev_a, *dev_b, *dev_r;
8.  size_t size = n_elem * sizeof(double);
9.  //allocate device buffers
10.  cudaMalloc((void**)&dev_a, size);
11.  cudaMalloc((void**)&dev_b, size);
12.  cudaMalloc((void**)&dev_r, size);

13.  //initialize device buffers
14.  cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
15.  cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

16.  //set grid/block size
17.  ...
18.  //multiply elements
19.  dotProd-vmul<<<grid, block>>>(dev_a, dev_b, dev_r,
20.  n_elem);

21.  //partial result
22.  cudaMemcpy(ret, dev_r, size, cudaMemcpyDeviceToHost);

23.  //CPU sum
24.  int i;
25.  for (i = 0; i < n_elem; i++)
26.  sum += ret[i];
27. }

1.  __global void dotProd-vmul(
2.  double *a, double *b,
3.  double *ret, int n_elem)
4.  {
5.  int i;
6.  int tid = blockIdx.x *
7.  blockDim.x + threadIdx.x;
8.  int n_threads = blockDim.x *
9.  gridDim.x;
10.  for (i=tid; i<n_elem; i+=n_threads)
11.  ret[tid] = a[tid] * b[tid];
12. }

27 12

Programmability and Portability

synergy.cs.vt.edu	

1.  __device__ void block_reduction(double *psum,
2.  int tid, int len_)
3.  {
4.  int stride = len_ >> 1;
5.  while (stride > 0) {
6.  if (tid < stride)
7.  psum[tid] += psum[tid+stride];
8.  __syncthreads();
9.  stride >>= 1;
10.  }
11. }

12. //Implementation of double atomicAdd
13. ...

14. __global__ void kernel_dotProd(double *phi1, double
*phi2, int i, int j, int k, int sx,

15.  int sy, int sz, int ex, int ey, int ez,
16.  int gz, T * reduction, int len_)
17. {
18.  extern shared psum[];
19.  int tid, x, y, z, itr;
20.  bool boundx, boundy, boundz;
21.  tid = threadIdx.x + (threadIdx.y) * blockDim.x
22.  + (threadIdx.z) * (blockDim.x * blockDim.y);
23.  x = (blockIdx.x)*blockDim.x+threadIdx.x+sx;
24.  y = (blockIdx.y)*blockDim.y+threadIdx.y+sy;

25.  psum[tid] = 0;
26.  boundy = ((y >= sy) && (y <= ey));
27.  boundx = ((x >= sx) && (x <= ex));

28.  for (itr = 0; itr < gz; itr++) {
29.  z = itr*blockDim.z+threadIdx.z +sz;
30.  boundz = ((z >= sz) && (z <= ez));
31.  if (boundx && boundy && boundz)
32.  psum[tid] += phi1[x+y*i+z*i*j] *
33.  phi2[x+y*i+z*i*j];
34.  }
35.  __syncthreads();
36.  block_reduction(psum,tid,len_);
37.  __syncthreads();

38.  if(tid == 0)
39.  atomicAdd(reduction,psum[0]);
40. }

1.  int main(int argc, char **argv)
2.  {
3.  //global and block sizes
4.  int ni, nj, nk, tx, ty, tz;
5.  //pick a mode and zeroth device
6.  cudaSetDevice(0)
7.  //declare host memory
8.  double *a, *b, *ret, zero = 0.0;
9.  //allocate and initialize it
10.  …

11.  //Allocate device buffers
12.  size_t size = sizeof(double)*ni*nj*nk;
13.  double *dev_a, *dev_b, *dev_r;
14.  cudaMalloc(&dev_a, size);
15.  cudaMalloc(&dev_b, size);
16.  cudaMalloc(&dev_r, sizeof(double));
17.  //initialize them
18.  cudaMemcpy(dev_a, a, size,
19.  cudaMemcpyHostToDevice);
20.  cudaMemcpy(dev_b, a, size,
21.  cudaMemcpyHostToDevice);
22.  cudaMemcpy(dev_r, &zero, sizeof(double),
23.  cudaMemcpyHostToDevice);

24.  //set computation shape
25.  dim3 grid, block, shape, start, end;
26.  block = dim3(tx, ty, tz);
27.  grid = dim3((ni+tx-1)/ni, (nj+ty-1)/ty, 1);
28.  shape = dim3(ni, nj, nk);
29.  start = dim3(0, 0, 0);
30.  end = dim3(ni-1, nj-1, nk-1);

31.  //run the kernel
32.  dotProd<<<grid, block, tx*ty*tz*sizeof(double)>>>
33.  (dev_a, dev_b, shape.x, shape.y, shape.z,
34.  start.x, start.y, start.z, end.x, end.y, end.z,
35.  (nk+tz-1)/tz, dev_r, tx*ty*tz);

36.  //bring the dot product back
37.  cudaMemcpy (ret, dev_r, sizeof(double),
38.  cudaMemcpyDeviceToHost);
39. }

Dot Product: Optimized Parallel on GPU Device
HOST DEVICE (GPU)

39 40

Programmability and Portability

synergy.cs.vt.edu	

Dot Product via our MetaMoph Library
1.  int main(int argc, char **argv)
2.  {
3.  //global and block sizes
4.  int ni, nj, nk, tx, ty, tz;
5.  //pick a mode and zeroth device
6.  choose_accel(0, accelModePreferCUDA);
7.  //declare host memory
8.  double *a, *b, *ret, zero = 0.0;
9.  //allocate and initialize it
10.  ...

11.  //Allocate device buffers
12.  size_t size = sizeof(double)*ni*nj*nk;
13.  double *dev_a, *dev_b, *dev_r;
14.  accel_alloc(&dev_a, size);
15.  accel_alloc(&dev_b, size);
16.  accel_alloc(&dev_r, sizeof(double));

17.  //initialize them
18.  accel_copy_h2d(dev_a, a, size, true);
19.  accel_copy_h2d(dev_b, a, size, true);
20.  accel_copy_h2d(dev_r, &zero, sizeof(double),
21.  true);

22.  //set computation shape
23.  a_dim3 grid, block, shape, start, end;
24.  block[0] = tx, block[1] = ty, block[2] = tz;
25.  grid[0] = (ni+tx-1)/ni, grid[1] = (nj+ty-1)/ty,
26.  grid[2] = (nk+tz-1)/tz;
27.  shape[0] = ni, shape[1] = nj, shape[2] = nk;
28.  start[0] = 0, start[1] = 0, start[2] = 0;
29.  end[0] = ni-1, end[1] = nj-1, end[2] = nk-1;

30.  //run the kernel
31.  accel_dotProd(&grid, &block, dev_a, dev_b,
32.  &shape, &start, &end, dev_r, a_db, true);

33.  //bring the dot product back
34.  accel_copy_d2h(ret, dev_r, sizeof(double),
35.  false);

36. }

also support:
accelModePreferOpenCL
for AMD/MIC/CPU

all kernels/copies can be
asynchronous with
flag = true, else blocking

grid & block specify
thread organization a
la CUDA/OpenCL

shape, start, and end allow dot
product on arbitrary
subregions of 3D space

Programmability and Portability

36

Targeting one device at a time at present.

synergy.cs.vt.edu	

Automated Task Scheduling (with CoreTSAR)

•  Automatically dividing parallel tasks across arbitrary heterogeneous
compute resources simultaneously for functional portability
–  CPUs, GPUs, APUs, Co-processors, FPGAs, …

•  Intelligent runtime task scheduling for performance portability
–  Accelerators add physical heterogeneity and distributed memory

§  GPUs, FPGAs, Co-processors (Intel MIC, Tilera Tile64, etc.)
–  System topology adds heterogeneity through locality imbalance

§  Hierarchical partially-shared caches
§  Non-uniform memory access (NUMA) memory systems
§  Operating system imbalance, work unevenly distributed to cores
§  Non-uniform latency to peripheral devices

Performance: Hardware/Software Co-Design

synergy.cs.vt.edu	

OpenMP Accelerator Behavior

Original/Master thread Worker threads Parallel region Accelerated region

#pragma omp parallel …

#pragma omp acc_region …

Kernels

Programmability and Portability

synergy.cs.vt.edu	

Our Version à OpenACC

Original/Master thread Worker threads Parallel region Accelerated region

#pragma omp parallel num_threads(2)

#pragma omp acc_region …

#pragma omp parallel …

Performance, Programmability, and Portability

synergy.cs.vt.edu	

Our Automated Task Schedulers
via Co-Design vs. 12-Core CPU

Performance: Hardware/Software Co-Design
in context of Programmability & Portability

Application

Sp
ee

du
p

ov
er

 1
2−

co
re

 C
PU

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

cg

cg

0

2

4

6

8

gem

gem

0.0

0.2

0.4

0.6

0.8

1.0
helmholtz

helmholtz

0.0

0.5

1.0

1.5

kmeans

kmeans

Scheduler
CPU GPU Static Dynamic Split Quick

synergy.cs.vt.edu	

Dot Product with OpenACC

<Date>

1.  void dotProd(double *a,
2.  double *b,
3.  double *ret,
4.  int n_elem)
5.  {
6.  int i;
7.  *ret = 0.0;
8.  for (i = 0; i < n_elem; i++)
9.  ret += a[i] * b[i];
10. }

Serial C 1.  void dotProd(double *a,
2.  double *b,
3.  double *ret,
4.  int n_elem)
5.  {
6.  int i;
7.  double summer = 0;
8.  #pragma acc kernels for independent \
9.  copyin(a[n_elem],b[n_elem]) \
10.  reduction(+:summer)
11.  for (i = 0; i < n_elem; i++)
12.  summer += a[i] * b[i];
13.  *ret = summer;
14. }

OpenACC

Just one pragma, target one of
GPU/CPU/MIC/…

Programmability and Portability

14

synergy.cs.vt.edu	

Dot Product Code Example

1.  void dotProd(double *a,
2.  double *b,
3.  double *ret,
4.  int n_elem)
5.  {
6.  int i;
7.  *ret = 0.0;
8.  for (i = 0; i < n_elem; i++)
9.  ret += a[i] * b[i];
10. }

Serial C 1.  void dotProd(double *a,
2.  double *b,
3.  double *ret,
4.  int n_elem)
5.  {
6.  int i;
7.  double summer = 0;
8.  #pragma acc kernels for independent \
9.  copyin(a[n_elem],b[n_elem]) \
10.  reduction(+:summer)
11.  for (i = 0; i < n_elem; i++)
12.  summer += a[i] * b[i];
13.  *ret = summer;
14. }

OpenACC

Just one pragma, target one
of GPU/CPU/MIC/…

synergy.cs.vt.edu	

Evaluating OpenACC with LDC

51.9

75.5

96.048

117

103.96

120.6

0

20

40

60

80

100

120

140

1

Pe
rf

or
m

an
ce

 (
G

FL
O

P
S)

Number of GPUs

NVIDIA c2070

NVIDIA k20x

Fixed k20x

k40

AMD 7970

AMD 7990

synergy.cs.vt.edu	

CoreTSAR Extended OpenACC

1.  void dotProd(double *a,
2.  double *b,
3.  double *ret,
4.  int n_elem)
5.  {
6.  int i;
7.  double summer = 0;
8.  #pragma acc kernels for independent \
9.  copyin(a[n_elem],b[n_elem]) \
10.  reduction(+:summer)
11.  for (i = 0; i < n_elem; i++)
12.  summer += a[i] * b[i];
13.  *ret = summer;
14. }

OpenACC

Three small changes, target
all devices with
coscheduling!

1.  void dotProd(double *a,
2.  double *b,
3.  double *ret,
4.  int n_elem)
5.  {
6.  int i;
7.  double summer = 0;
8.  #pragma acc kernels for independent hetero(true) \
9.  copyin(a[true:n_elem],b[true:n_elem])\
10.  reduction(+:summer)
11.  for (i = 0; i < n_elem; i++)
12.  summer += a[i] * b[i];
13.  *ret = summer;
14. }

CoreTSAR

synergy.cs.vt.edu	

Multi-GPU LDC with CoreTSAR

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4

Pe
rf

or
m

an
ce

 (
G

FL
O

P
S)

Number of GPUs

CoreTSAR on c2070s Manual c2070

Performance gap caused by data transfer.
Needs halo support! (in progress)

synergy.cs.vt.edu	

 Ecosystem for Heterogeneous Parallel Computing

Heterogeneous Parallel Computing Platform

Sequence
Alignment

Molecular
Dynamics

Earthquake
Modeling

Neuro-
informatics

Epidemiology Cybersecurity

MAVs

MANUAL CO-DESIGN

Manual
Co-Design

à
Automated
Co-Design

synergy.cs.vt.edu	

Roadmap

•  Vision
•  Team
•  Approach: Synergistic Co-Design
•  Artifacts

–  Optimized CFD Codes
–  CoreTSAR / AffinityTSAR
–  MetaMorph
–  MPI-ACC
–  VOCL: Virtual OpenCL

•  Achievements & Publications
•  Next Steps

Algorithms Software

Hardware

synergy.cs.vt.edu	

Vision: Abstraction Library à MetaMorph
•  Motivation

–  Architectures changing rapidly à scientists should not have to rewrite codes!

•  Goal
–  Community-driven development of accelerated back-ends and plugins
–  Support for distributing workload onto the right device(s) with minimal user

intervention, i.e.
§  Automatic load balancing at runtime

to deliver better performance and
resource utilization (via CoreTSAR)

•  Desired Features
–  Usable by non-architecture experts

(via drop-in replacement functions)
–  How? Hide accelerator-centric

languages & optimizations behind a
standard interface

51
.9

75
.5

 96
.0

48
 11
7

10
3.

96

12
0.

6

0

20

40

60

80

100

120

140

1

Pe
rf

or
m

an
ce

 (G
FL

O
PS

)

Number of GPUs

NVIDIA
c2070

NVIDIA
k20x

Fixed
k20x

k40

AMD
7970

AMD
7990

synergy.cs.vt.edu	

MetaMorph: Updates

•  Poster session at SC’14
–  MetaMorph: A Modular Library for Democratizing the Acceleration of Parallel

Computing across Heterogeneous Devices
–  Strong interest in an HSA-native backend

§  AMD et. al

–  Moderate interest in an OpenMP backend
§  target Intel MIC and CPU natively
§  Intel might be considering dropping OpenCL

–  Several papers on implementing SpMV GPU
operations on CSR and similar sparse structures,
efficiently and without expanding to dense form
–  Paper on communication-avoiding Krylov for
CPU/GPU hybrid clusters

synergy.cs.vt.edu	

MetaMorph: Updates

•  Data Marshalling & Face Transform Survey
–  Three replies: GenIDLEST, INCOMP3D, and SENSEI
–  Needed operations

§  Transpose, Rotate (90/180/270), Mirror;
§  GenIDLEST also needs Interpolate.
§  SENSEI needs Z-ordering inversal of XY planes

•  Potential use in a Smooth Particle Hydrodynamics (SPH) code
–  Essentially a particle-in-cell (PIC) code w/ sorted array of particles

indexed by cell
–  Needs MPI capability to transfer “extents” of contiguous memory

containing particles for a given cell

synergy.cs.vt.edu	

MetaMorph: Future Work

•  Incorporation of remaining face transforms
–  Rotations, mirroring, and scaling

•  Validation of ASYNC variants of face transforms and exchanges
–  MPI exchanges should be the most tricky, due to callback chains and

helper functions required for transparent management of async
transfers

•  Develop plane ordering inversal primitive for SENSEI
•  Identify and Isolate primitives needed by computational math

–  MatVec operations, Multigrids, other computational patterns

•  Expand MPI plugin to transfer “extents” and sets of extents
–  to support SPH and other Particle-in-cell style computations

•  Investigate ParMETIS interoperability for potential plugin

synergy.cs.vt.edu	

 Ecosystem for Heterogeneous Parallel Computing

•  Goal
–  Co-designed data movement library that hides all the

hardware and system software details from the algorithm
developer while supporting a multitude of environments

synergy.cs.vt.edu	

Data Movement in CPU-GPU Clusters

GPU	
device	
memory	

GPU	
device	
memory	

CPU	
main	

memory	

CPU	
main	

memory	

Network

MPI Rank = 0 MPI Rank = 1

if(rank == 0)
{
 GPUMemcpy(host_buf, dev_buf, D2H)
 MPI_Send(host_buf,)
}

if(rank == 1)
{
 MPI_Recv(host_buf,)
 GPUMemcpy(dev_buf, host_buf, H2D)
}

Performance: Hardware/Software Co-Design

synergy.cs.vt.edu	

MPI-ACC:
Generalized Runtime for Accelerator Systems

GPU	
device	
memory	

GPU	
device	
memory	

CPU	
main	

memory	

CPU	
main	

memory	

Network

MPI Rank = 0 MPI Rank = 1

if(rank == 0)
{
 MPI_Send(any_buf,)
}

if(rank == 1)
{
 MPI_Recv(any_buf,)
}

• Examples: MPI-ACC, MVAPICH, Open MPI
•  Programmability/Productivity: multiple accelerators and prog.

models (CUDA, OpenCL)
•  Performance: system-specific and vendor-specific

optimizations (Pipelining, GPUDirect, pinned host memory,
IOH affinity)

Performance: Hardware/Software Co-Design Performance: Hardware/Software Co-Design
in context of Programmability & Portability

synergy.cs.vt.edu	

MPI-ACC:
Generalized Runtime for Accelerator Systems

Main	
Memory	

CPU	 CPU	
Network	

Rank	 =	 0	 Rank	 =	 1	
if (rank == 0)
{
 MPI_Send(s_buf,);
}

if (rank == 1)
{
 MPI_Recv(r_buf,);
}

GPU	
Memory	

NVRAM	

Unreliable	
Memory	

Main	
Memory	

GPU	
Memory	

NVRAM	

Unreliable	
Memory	

Performance: Hardware/Software Co-Design
in context of Programmability & Portability

synergy.cs.vt.edu	

MPI+CUDA vs. MPI-ACC

•  Accelerates data movement
operations by two orders of
magnitude

•  Enables new application-level
optimizations

MPI-ACC runtime optimized

Performance: Hardware/Software Co-Design
in context of Programmability & Portability

synergy.cs.vt.edu	

VOCL: A Virtual Implementation of OpenCL for
Access and Management of Remote GPU Devices

•  GPU Virtualization
–  Transparent utilization of remote GPUs

§  Remote GPUs look like local “virtual” GPUs
§  Applications can access them as if they are

regular local GPUs
§  VOCL will automatically move data and

computation

–  Efficient GPU resource management
§  Virtual GPUs can migrate from one physical

GPU to another
§  If a system admin wants to add or remove a

node, he/she can do that while applications
are running (hot-swap capability)

•  “VOCL: An Optimized Environment for
Transparent Virtualization of Graphics
Processing Units,” IEEE Innovative Parallel
Computing, May 2012.

•  “Transparent Accelerator Migration in a
Virtualized GPU Environment,” IEEE/
ACM International Symposium on Cluster,
Cloud and Grid Computing, May 2012.

synergy.cs.vt.edu	

Virtual OpenCL (VOCL) Framework
•  Transparent utilization of remote GPUs
•  Efficient GPU resource management

Compute Node

Physical
GPU

Application

Native OpenCL Library

OpenCL API

Traditional Model

Compute Node

Physical
GPU

VOCL Proxy

OpenCL
API

VOCL Model

Native OpenCL Library
Compute Node

Virtual GPU

Application

VOCL Library

OpenCL API

MPI

Compute Node

Physical
GPU

VOCL Proxy

OpenCL
API Native OpenCL Library

Virtual GPU
MPI

 “VOCL: An Optimized Environment for Transparent
Virtualization of Graphics Processing Units,” IEEE
Innovative Parallel Computing, May 2012.

synergy.cs.vt.edu	

Roadmap

•  Vision
•  Team
•  Approach: Synergistic Co-Design
•  Artifacts

–  Optimized CFD Codes
–  CoreTSAR / AffinityTSAR
–  MetaMorph
–  MPI-ACC
–  VOCL: Virtual OpenCL

•  Achievements & Publications
•  Next Steps

Algorithms Software

Hardware

synergy.cs.vt.edu	

Sampling of Achievements

•  Computer Science
–  At Run Time: Automated run-time system that maps the right task(s) to

the right processor at the right time for best performance à vendors
–  Identified commonality for library for CFD codes: generalized GPU-to-

GPU communication (via MPI), ghost-cell exchange between GPUs, …

synergy.cs.vt.edu	

Publications in 2014 (1 of 3)
1.  B. Pickering, C. Jackson, T. Scogland, W. Feng, C. Roy, “Directive-Based GPU Programming

for Computational Fluid Dynamics,” 52nd AIAA Aerospace Sciences Meeting (SciTech),
National Harbor, MD, Jan. 2014.

2.  Y. Xia, L. Luo, H. Luo, J. Edwards, F. Mueller, “GPU Acceleration of a Reconstructed
Discontinuous Galerkin Method for Compressible Flows on Unstructured Grids,” 52nd
AIAA Aerospace Sciences Meeting (SciTech), National Harbor, MD, Jan. 2014.

3.  Y. Xia, H. Luo, L. Luo, J. Edwards, J. Lou, F. Mueller, “OpenACC-based GPU Acceleration
of a 3-D Unstructured Discontinuous Galerkin Method,” 52nd AIAA Aerospace Sciences
Meeting (SciTech), National Harbor, MD, Jan. 2014.

4.  L. Luo, J. Edwards, H. Luo, F. Mueller, "Performance Assessment of Multi-block LES
Simulations using Directive-based GPU Computation in a Cluster Environment," 52nd
AIAA Aerospace Sciences Meeting (SciTech), National Harbor, MD, Jan. 2014.

5.  C. Li, Y. Yang, H. Dai, S. Yan, F. Mueller, H. Zhou, “Understanding the Tradeoffs between
Software-Managed vs. Hardware-Managed Caches in GPUs,” IEEE International
Symposium on Performance Analysis of Systems and Software, Mar. 2014.

6.  T. Scogland, W. Feng, B. Rountree, B. de Supinski, “CoreTSAR: Adaptive Worksharing for
Heterogeneous Systems,” Int’l Supercomputing Conf., Leipzig, Germany, Jun. 2014

synergy.cs.vt.edu	

Publications in 2014 (2 of 3)
7.  L. Luo, J. Edwards, H. Luo, F. Mueller, “GPU Port of a Parallel Incompressible Navier-

Stokes Solver based on OpenACC and MVAPICH2,” AIAA Aviation 2014, Atlanta, GA,
Jun. 2014.

8.  Y. Xia, L. Luo, H. Luo, J. Lou, J. Edwards, F. Mueller, “On the Multi-GPU Computing of a
Reconstructed Discontinuous Galerkin Method for Compressible Flows on 3D Hybrid
Grids,” 7th AIAA Theoretical Fluid Mechanics Conference, Atlanta, GA, Jun. 2014.

9.  A. Amritkar, D.Tafti, P. Sathre, K. Hou, S. Chivakula, W. Feng. “Accelerating Bio-Inspired
MAV Computations using GPUs.” AIAA Aviation and Aeronautics Forum and Exposition
2014, Atlanta, GA, Jun. 2014.

10. K. Swirydowicz, E. de Sturler, X. Xu, C. Roy, “Fast Solvers and Preconditioners,” SIAM
Annual Meeting, Chicago, IL, Jul. 2014.

11. A. Amritkar, D. Tafti. “CFD Computations using Preconditioned Krylov Solver on GPUs.”
ASME 2014 Fluids Engineering Division Summer Meeting, Chicago, IL, Aug. 2014.

12. K. Swirydowicz, A. Amritkar, E. de Sturler, D. Tafti. “Recycling Krylov Subspaces for CFD
Application,” ASME 2014 Fluids Engineering Division Summer Meeting, Chicago, IL, Aug.
2014.

synergy.cs.vt.edu	

Publications in 2014 (3 of 3)

13.  E. Zharovsky, A. Sandu, H. Zhang, “A Class of IMEX Two-step Runge-Kutta Methods,”
SIAM Journal on Numerical Analysis, 2014.

14.  H. Zhang, A. Sandu, “FATODE: A Library for Forward, Adjoint, and Tangent Linear
Integration of ODEs,” SIAM Journal on Scientific Computing, 2014.

15.  P. Tranquilli, A. Sandu, “Rosenbrock-Krylov Methods for Large Systems of Differential
Equations,” SIAM Journal on Scientific Computing, 36(3):1313-1338, 2014.

16.  A. Cardone, Z. Jackiewicz, A. Sandu, H. Zhang, “Extrapolated IMEX Runge-Kutta
Methods,” Mathematical Modelling and Analysis,19(1):18-43, 2014.

17.  A. Cardone, Z. Jackiewicz, A. Sandu, H. Zhang, “Extrapolation-Based Implicit-Explicit
General Linear Methods,” Numerical Algorithms, 65(3):377-399, 2014.

18.  H. Zhang, A. Sandu, “Application of implicit-explicit general linear methods to
reaction diffusion problems,” 12th International Conference of Numerical Analysis and
Applied Mathematics (ICNAAM 2014), Rodos Palace Hotel, Rhodes,Greece,
September 2014.

synergy.cs.vt.edu	

Thesis Manuscripts in 2014

•  Nishanth Balasubramanian, “ScalaMemAnalysis: A Compositional Approach
to Cache Analysis of Compressed Memory Traces,” M.S. Thesis, Dept. of
Computer Science, North Carolina State University, Jun. 2014. Now at
NVIDIA.

•  Brent Pickering, “Evaluating the OpenACC API for Parallelization of CFD
Applications,” M.S. Thesis, Dept. of Aerospace and Ocean Engineering,
Virginia Tech, Jul. 2014. Now pursuing Ph.D. at Virginia Tech.

•  Thomas Scogland, “Runtime Adaptation for Autonomic Heterogeneous
Computing,” Ph.D. Thesis, Dept. of Computer Science, Virginia Tech, Aug.
2014. Heading to DOE Lawrence Livermore National Laboratory.

synergy.cs.vt.edu	

Co-Design Exemplars
1.  ParaMEDIC: Parallel Metadata

Environment for Distributed I/O
& Computing (yrs à mins)
à  Find missing genes

2. Molecular Modeling
à  Rational drug design

Source: On the Future of Genomic Data by S. Kahn

•  Changing Landscape
… from FLOPS (“old HPC”) to bytes (“new HPC” à BIG DATA)

Synergistic Co-Design for BIG DATA
 Prof. Wu Feng, Virginia Tech

Hardware

Algorithms
100x

Software
4x

Hardware
2x

800x

http://www.youtube.com/watch?
v=zPBFenYg2Zk

http://archive.isgtw.org/?pid=1000811

3. Temporal Data Mining of Brain
http://synergy.cs.vt.edu/pubs/papers/feng-temporal-data-mining-gpu-

gems-2011.pdf
 White House BIGDATA Event, May 2013

(See also New York Times, Economist, BusinessWeek, Washington Post, …)

synergy.cs.vt.edu	

Synergistic Co-Design for DARPA Challenges

11 Finalists (w/ two
from Virginia Tech)
•  Team ViGIR
•  Team Valor

Team Valor

Team ViGIR

http://www.theroboticschallenge.org/

synergy.cs.vt.edu	

AFOSR Basic Research Initiative:
Transformational Computing via Co-Design
of High-Performance Algorithms and Hardware

This effort is envisioned as a “MURI-like” effort with
collaborative grants to teams that will create a new community of
researchers skilled in the design, development, and deployment of systems tuned
to maximize the synergy of advanced algorithms and high-performance hardware.

New Center at Virginia Tech:
Synergistic Environments for Experimental Computing (SEEC)

Algorithms
216x

Software
4x

Hardware
88x

synergy.cs.vt.edu	

What’s Next? (Last Year)
•  Platforms

–  AMD & Intel CPU, AMD APU, AMD & NVIDIA GPUs, Intel MIC

•  Towards Ease of Use and Automation
(for Performance, Programmability, and Portability)
–  Web resource for tenets of synergistic co-design

 … between algorithms, software, and hardware à automation (long term)
–  Towards a CFD library for heterogeneous computing systems

§  GPU-integrated MPI vs. GPUDirect, ghost cell exchange, bounds checking, …

–  Code repositories for production codes

•  GPU-Integrated MPI Evaluation
–  Experimental platforms (MIC and next-generation APU w/ “infinite

memory”)

•  GPU mixed-precision solvers, GPU-efficient preconditioners
•  GPU-efficient accurate and stable high-order time stepping

synergy.cs.vt.edu	

Plans for Upcoming Year

SENSEI-LDC
•  Publish article with de Sturler’s group on preconditioners/solvers for GPU
•  Collaborate w/ Meuller’s group on MemTrace (explicit and implicit codes)

SENSEI-Lite
•  Complete code development to include viscous terms & implicit Jacobian
•  Collaborate with Sandu’s group on time accurate solutions
•  Collaborate with de Sturler’s group on preconditioners/solvers

SENSEI
•  Improve general preconditioners/solvers and implementation on GPU w/ de

Sturler’s group
•  Develop strategy for handling function pointers and allocatables within

OpenACC w/ Feng’s group
•  Implement OpenACC directives in SENSEI code base w/ Feng’s group

synergy.cs.vt.edu	

RDGFLO and INCOMP3D: Next Steps
•  Further Porting of RDGFLO

–  Hierarchical WENO reconstruction, implicit time integration and
turbulence model (LES)

•  Porting of the full version of INCOMP3D
–  3D LDFSS, implicit time integration, full IB support and turbulence

model (LES)

•  Biggest hurdle: multi-GPU MPI communication
–  Avoid explicit GPU-CPU transfer during MPI data exchanges.
–  A CUDA-aware MPI implementation (currently MVAPICH2) is used,

which can take advantage of the best implementation available
(GPUDirect, hardware RDMA in CUDA5).

–  Current MPI Fortran interface does not support operations on
OpenACC variables directly. Manual data packing on GPU using
explicit CUDA programming is still required in OpenACC codes.

synergy.cs.vt.edu	

Year One: CS (Needs to be updated. Also less text.)
•  Conduct R&D on optimizing and automating heterogeneous

computing at the node level, e.g., automated run-time scheduling
•  Develop, characterize, and optimize/re-factor dwarf abstractions

(composition of dwarfs?)
•  Interact with methods/algorithms and applications teams on

mapping to heterogeneous systems. (Slightly more detail needed,
e.g., tradeoffs on mapping explicit/implicit to GPU, data-transfer
overhead of codes, interfacing to linear solvers like Trilinos, etc.)

•  Support domain scientists on heterogeneous computing w/ GPUs
•  Infrastructure: Tools for domain scientists and engineers, e.g., PGI

Accelerator Suite (including OpenACC, PGI Fortran compiler, etc.)
•  Hire CS postdoc and 2 GRAs (Adrian + Wu)

–  GRA Ross Glandon: Continue to educate him(self) on both time stepping
algorithms and parallel computing

–  Other GRA still to be hired (from Kaixi, Sriram, Aniket, Lokendra: post-
September 2013, Tom: post-September 2013)

synergy.cs.vt.edu	

Next Steps

•  Next steps
–  A list of (re-factored) deliverables and tasks for our program manager.

•  Need a picture of hierarchical parallelism
–  Need a picture of MPI … domain scientists responsible for mapping/

decomposition
–  Need a picture of OpenMP/OpenCL … automated portion for

supporting task scheduling

synergy.cs.vt.edu	

Ongoing and Upcoming Tasks

•  Further Porting of RDGFLO
–  Hierarchical WENO reconstruction; Implicit time integration
–  Large eddy simulation

•  Porting of the full version of INCOMP3D
–  3D LDFSS, implicit time integration
–  Full IB support, turbulence model (LES) and multi-phase, reacting fluids

•  Multiple GPUs with MPI communication
–  Avoid explicit GPU-CPU transfer during MPI data exchanges.
–  A CUDA-aware MPI implementation (currently MVAPICH2) is used,

which can take advantage of the best implementation available
(GPUDirect hardware RDMA in CUDA5).

–  Mix OpenACC with CUDA-aware MPI calls. Current MPI interfaces
does not support OpenACC variables directly.

synergy.cs.vt.edu	

Mobile and Desktop Supercomputing

•  Description
–  AMD GPUs (4), NVIDIA GPUs (4), AMD APUs (2), Intel MIC (2)

•  Pictures of above
–  Note early access to potpourri of experimental architectures

•  Make sure to give 5-second blurb to “memory-unlimited”
GPU, i.e., AMD Radeon 7990 and 8970.
–  How? Virtual memory addressing. Limited only by system memory.

synergy.cs.vt.edu	

Acknowledgements

•  This work was funded by the Air Force Office of Scientific
Research (AFOSR) Computational Mathematics Program
–  Program Manager: Fariba Fahroo
–  Grant No. FA9550-12-1-0442

synergy.cs.vt.edu	

APPENDIX

synergy.cs.vt.edu	

HPL: High-Performance Linpack

•  A benchmark that
–  Solves a dense n by n system of linear equations Ax = b. (Used since

1993 by TOP500 to rank the fastest supercomputers in the world.)
–  Seeks to approximate how fast a computer will perform when solving

real problems.
–  Number of Operations: 2/3n³ + 2n²

•  Issue

HPL - Bad Things

• LINPACK Benchmark is 36 years old

• Top500 (HPL) is 20.5 years old

• Floating point-intensive performs O(n3)
floating point

operations and moves O(n2) data.

• No longer so strongly correlated to real
apps.

• Reports Peak Flops (although hybrid systems
see only 1/2 to 2/3 of Peak)

• Encourages poor choices in architectural
features

• Overall usability of a system is not measured

• Used as a marketing tool

• Decisions on acquisition made on one
number

• Benchmarking for days wastes a valuable
resource

synergy.cs.vt.edu	

HPCG: High-Performance Conjugate Gradient

synergy.cs.vt.edu	

What is an AMD APU?

synergy.cs.vt.edu	

Collaborations with Math

Collaboration on the implicit SENSEI-LDC code
•  Focus is on solvers and preconditioners
•  Maximum efficiency is found when considering interactions between: matrix

storage format, memory use, hardware, preconditioner, solver
•  K. Swirydowicz, E. de Sturler, X. Xu, and C. J. Roy, “Fast Solvers and

Preconditioners,” SIAM Annual Meeting, Chicago, IL, July 7-11, 2014

Collaboration on SENSEI
•  SENSEI uses modern Fortran, but includes ISO-C bindings so we can interface

with existing solvers in C
•  SENSEI uses a built in CPU solver library (Fortran), but has recently been

extended towards GPU functionality using the CUDA ITSOL interface (C); this
is the same interface used by de Sturler’s group

•  The folks in Math should now have access to the SENSEI GIT repository

synergy.cs.vt.edu	

Collaborations with CS

Collaboration w/ Feng’s group: SENSEI-LDC and SENSEI
•  Worked with Tom Scogland to get explicit SENSEI-LDC code running on

multiple GPUs (AIAA Paper, journal submission in progress)
•  Developed plan for GPU-parallelizing SENSEI using OpenACC
•  B. P. Pickering, C. W. Jackson, T. R. W. Scogland, W.-C. Feng, and C. J. Roy, “Directive-Based GPU

Programming for Computational Fluid Dynamics,” AIAA Paper 2014-1131, 52nd Aerospace Sciences
Meeting, National Harbor, MD, January 13-17, 2014

Collaboration w/ Sandu’s group: SENSEI-Lite
•  Developed a MATLAB version of SENSEI: the “real” SENSEI-Lite
•  Current code capabilities: structured grid, general geometry, finite volume

method, single block, inviscid, and explicit solver
•  Upcoming capabilities: viscous (Navier-Stokes) & implicit w/ full Jacobian
•  Sandu’s group currently has access to code through github
•  Sandu’s group will use the implicit code for studying their IMEX and ROK/EXPK

schemes for time accurate simulations

synergy.cs.vt.edu	

 Ecosystem for Heterogeneous Parallel Computing

Heterogeneous Parallel Computing Platform

Sequence
Alignment

Molecular
Dynamics

Earthquake
Modeling

Neuro-
informatics

Epidemiology Cybersecurity

MAVs

MANUAL CO-DESIGN

Manual
Co-Design

à
Automated
Co-Design

synergy.cs.vt.edu	

Acceleration Potential of Kernels

•  Parallelism: Multicores and Accelerators (GPUs, Intel MIC)
•  Problem: Existing Codes Sequential or Coarse Parallelism

-  Ad-hoc approach parallelization à unknown results

•  Vision: Infer speedup potential before refactoring code
1.  Determine variable reuse for given architecture
2.  Estimate speedup for fine-grained parallelization
3.  Assess effects of manual code and data transformations
4.  Suggest (or auto-generate) code and data

transformations

Performance: Hardware/Software Co-Design

synergy.cs.vt.edu	

Overview of MAV Requirements

synergy.cs.vt.edu	

Targeted CFD Codes
SENSEI (C. Roy, Virginia Tech)

–  Structured, multiblock, 2nd order, finite volume code
–  Artificial compressibility method
–  Arbitrary Lagrangian/Eulerian (ALE) 2nd or higher order spatial accuracy
–  Artificial compressibility (AC) and immersed boundary (IB) methods

GenIDLEST (D. Tafti, Virginia Tech)
–  Structured, multiblock, 2nd order, finite volume code
–  Pressure projection method
–  ALE and immersed boundary methods (IBM)

RDGFLO (H. Luo, NCSU)
–  Unstructured, discontinuous Galerkin (DG) method
–  High-order solution of compressible flows

INCOMP3D (J. Edwards, NCSU)
–  Structured, multiblock finite volume code
–  Second or higher order spatial accuracy
–  ALE and IBM

synergy.cs.vt.edu	

GPU GenIDLEST: Preliminary Profiling

•  Performance Breakdown

•  Data marshaling performed on GPU, but …
–  Data transfers still ~ 20% of execution time
–  Maximum speedup achievable: 5x! (Amdahl’s law)

§  Better overlapping of computations with transfers à MPI-ACC

Time % Component

44% kernel_pc_jac_blk2_pc_ortho

19.3% GPU-CPU Data Transfers

7.32% kernel_pc_jac_glb2_ortho

7.13% kernel_matxvec2_ortho

…. ….

synergy.cs.vt.edu	

GPU GenIDLEST: Issues

•  Kernels operating at low occupancy
–  52% @ 75% occupancy, 33% @ 25% occupancy, 15% @ < 25% occupancy
–  Manual optimization techniques: (1) Improved register usage, (2) optimize

use of in-kernel resources, and (3) concurrent kernel execution

•  Reductions performed on CPU
–  Entails transferring data back to CPU for reduction
–  Efficient reduction algorithms available for GPU à port reduction to GPU

•  Linear algebra kernels – saxpy, daxpy, matrix-vector multiply
–  15% of execution time
–  Benchmark performance against GPU BLAS libraries

•  Sliced array data transfers in CUDA Fortran
–  Results into multiple cudaMemcpy calls for a single data transfer. OUCH!

synergy.cs.vt.edu	

Targeted CFD Codes
SENSEI (C. Roy, Virginia Tech)

–  Structured, multiblock, 2nd order, finite volume code
–  Artificial compressibility method
–  Arbitrary Lagrangian/Eulerian (ALE) 2nd or higher order spatial accuracy
–  Artificial compressibility (AC) and immersed boundary (IB) methods

GenIDLEST (D. Tafti, Virginia Tech)
–  Structured, multiblock, 2nd order, finite volume code
–  Pressure projection method
–  ALE and immersed boundary methods (IBM)

RDGFLO (H. Luo, NCSU)
–  Unstructured, discontinuous Galerkin (DG) method
–  High-order solution of compressible flows

INCOMP3D (J. Edwards, NCSU)
–  Structured, multiblock finite volume code
–  Second or higher order spatial accuracy
–  ALE and IBM

synergy.cs.vt.edu	

RDGFLO: Overview
Reconstructed Discontinuous Galerkin Flow Solver
Key Features

–  Compressible Navier-Stokes / Euler equations.
–  Third-order reconstructed discontinuous Galerkin (DG) finite element method.
–  Unstructured hybrid grids, i.e., tetrahedron, prism, pyramid, hexahedron.
–  Time-accurate and steady-state solution schemes.
–  MPI-based parallel computing on CPU clusters.

Need GPU acceleration for RDGFLO because …

Rewriting a huge legacy code using CUDA is too costly. Alternatively, …

High-order methods are expensive for large-scale problems in terms of computing time!

OpenACC does not require much change of data structures and algorithms in a legacy code.

synergy.cs.vt.edu	

RDGFLO: GPU Parallelization

Race condition occurs in GPU parallelization in loops over faces
when data writes to their left and right cell arrays.

Example: the elemental residual array for the cell (red) can be
overwritten simultaneously in multiple GPU cores in loops over
its faces by its face-neighboring cells (blue).

Coloring algorithm: reorder face indices and pack them in
groups; Criterion: faces that share common elements do not reside
in the same group (the same strategy in the case of OpenMP).

Example: an ACC sequential loop over the groups is nested outside
the ACC parallel loop over the faces (the original loop is
untouched).

All geometric and solution arrays are copied from host to device only once. For steady-
state problems, solution arrays are only copied back to host memory at the end of time
iterations and dumped in files.

synergy.cs.vt.edu	

RDGFLO: Weak Scaling Tests

0

5

10

15

20

125k 319k 966k

Speedup vs. Nr. of Cells

Speedup vs.
Nr. of Cells

Unit timings on the grid of 966k cells
-- CPU: AMD Opteron Processor 6128
-- GPU-type1: nVidia Tesla C2050
-- GPU-type2: nVidia Tesla K20c

Preliminary Result: A speedup factor of 20x (or more) is achievable.

synergy.cs.vt.edu	

Targeted CFD Codes
SENSEI (C. Roy, Virginia Tech)

–  Structured, multiblock, 2nd order, finite volume code
–  Artificial compressibility method
–  Arbitrary Lagrangian/Eulerian (ALE) 2nd or higher order spatial accuracy
–  Artificial compressibility (AC) and immersed boundary (IB) methods

GenIDLEST (D. Tafti, Virginia Tech)
–  Structured, multiblock, 2nd order, finite volume code
–  Pressure projection method
–  ALE and immersed boundary methods (IBM)

RDGFLO (H. Luo, NCSU)
–  Unstructured, discontinuous Galerkin (DG) method
–  High-order solution of compressible flows

INCOMP3D (J. Edwards, NCSU)
–  Structured, multiblock finite volume code
–  Second or higher order spatial accuracy
–  ALE and IBM

synergy.cs.vt.edu	

INCOMP3D: Overview
Multi-block Incompressible Navier-Stokes Solver for Large Eddy
Simulation
Key Features

–  Higher order PPM / central-difference schemes
–  Fully implicit time evolution using dual-time stepping methodology
–  Multi-block structured meshes (MPI parallelism)
–  Immersed boundary methods for complex motion events

Need GPU acceleration for INCOMP3D to reduce costs associated with
large-eddy simulation at high Reynolds numbers

synergy.cs.vt.edu	

INCOMP3D: GPU Parallelization

•  Two scaled-down versions realized
•  OpenACC (ACC) port

–  Main loop is carried out on GPU only. All essential arrays remain on GPU
main memory. Temporary data arrays are created directly on GPU.

–  One code can be compiled into pure CPU or GPU-accelerated versions, using
different compiler options. This facilitates long-term maintenance.

•  CUDA Fortran (CUF) port
–  Each time step are carried out by one monolithic kernel, which includes

residual calculation and time marching.
–  Residual array is directly created in shared memory; time step is local to each

thread. Memory requirement is greatly reduced.
–  Overlapping blocks are used, due to inter-thread data dependency.
–  Residual calculation involves flux grouping by direction (i and j directions), to

avoid memory contingency.
–  CUDA Fortran array overhead identified and solved using global variables.

synergy.cs.vt.edu	

INCOMP3D: Initial Findings

•  ACC and CUF both achieved
significant speedup over CPU

•  CUF achieved better performance,
but requires much more effort to
port and maintain
–  Direct access of shared memory

allows greater flexibility on
algorithms.

–  Easier to make mistakes; harder to
debug.

•  ACC provides a good compromise
between CPU and CUDA
–  Good speedup (~10x), with minimal

to moderate effort on porting.
–  Easier to debug and maintain.

Example: steady-state flow inside a
channel with 3 circular obstacles,
Re=200. All results (in seconds) are
obtained using nVidia c2050.

0 100 200 300
0

5000

10000

0 100 200 300
0

300

600

M
ai

n
lo

op
 ru

n
tim

e
(s

ec
on

ds
)

0 100 200 300
0

100

200

Grid size (103)

7.8x

10.2x
9.9x

13.8x

29x
31x

34x 45x

synergy.cs.vt.edu	

Upcoming Tasks (Edwards)

•  Accuracy study and optimization of 2-stage BILU(0)
–  Storage of factorized 𝐷↓𝑖,𝑗,𝑘  is different from the original algorithm.
–  Triangle substitution needs modification.
–  Solver accuracy may be slightly different from the original codes.

•  Scheduling multiple blocks on one GPU – rehashing
–  Balance must be found between “size of blocks” vs. “number of blocks”.

•  Improvement on MPI
–  Recently available hardware GPU RDMA may improve MPI efficiency.
–  General data exchange libraries can be adopted.

•  Atomic operations instead of coloring schemes
–  Atomic operations are now available in PGI’s latest compilers supporting

OpenACC 2.0.
•  Two-level synchronization in wavefront scheme
•  Further optimizations of other kernels (flux, BC, LHS)

Recent Progress: 3D MPI Performance
87	

synergy.cs.vt.edu	

Collaboration (Edwards)
•  Collaboration with F. Muller’s group (NCSU CS)

–  Invaluable cluster and software support by Muler’s group.
–  Technical challenges on OpenACC and CUDA are actively discussed.

•  Collaboration with RDGFLO3D (NCSU MAE)
–  Repositories of codes are set up for easy access.
–  Common algorithms on implicit methods are shared, reducing code development effort.
–  Y. Xia, L. Luo, H. Luo, J. Lou, J. Edwards, F. Mueller, “On the Multi-GPU Computing of a

Reconstructed Discontinuous Galerkin Method for Compressible Flows on 3D Hybrid
Grids,” AIAA Aviation 2014, Georgia

•  Incorporation of GPU-aware functionalities of MVAPICH2 (VT CS)
–  With the support on MVAPICH2 from Hao Wang, INCOMP3D is able to conduct efficient

data transfers across GPUs on different cluster nodes.
–  Portability of the data transfer codes is greatly improved.
–  H. Wang, S. Potluri, D. Bureddy, C. Rosales, D. K. Panda, "GPU-Aware MPI on RDMA-Enabled

Clusters: Design, Implementation and Evaluation," IEEE Transactions on Parallel and
Distributed Systems, vol. 99, PrePrints, 2014.

•  Advanced wavefront scheme for the implicit solvers (VT CS)
–  An advanced synchronization scheme pioneered by Feng’s group (VT CS) is being studied.
–  S. Xiao, W. Feng, “Inter-Block GPU Communication via Fast Barrier Synchronization,” 24th

IEEE International Parallel and Distributed Processing Symposium, Atlanta, Georgia, April
2010.

Recent Progress: 3D MPI Performance
88	

synergy.cs.vt.edu	

Publications in 2013

•  P. Tranquilli, A. Sandu, “Rosenbrock-Krylov Methods for Large Systems of
Differential Equations” http://arxiv.org/abs/1305.5481, May 2013.

•  J. M. Derlaga, T. S. Phillips, C. J. Roy, “SENSEI Computational Fluid Dynamics Code: A
Case Study in Modern Fortran Software Development,” AIAA Paper 2013-2450,
21st AIAA Computational Fluid Dynamics Conf., June 2013.

•  S. R. Glandon, P. Tranquilli, A. Sandu, “ Acceleration of Matrix-Free Time Integration
Methods”, Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems
(ScalA) at SC13, November 2013.

synergy.cs.vt.edu	

Publications (Under Review and In Preparation)
•  Under Review

–  P. Tranquilli, A. Sandu, “Exponential-Krylov Methods for Ordinary Differential Equations,” Journal of
Computational Physics.

–  H. Zhang, A. Sandu, S. Blaise: High Order Implicit-Explicit General Linear Methods with Optimized
Stability Regions,” SIAM Journal on Scientific Computing, MS 097670.

–  A. Aji et al., “MPI-ACC: GPU-Integrated MPI for Scientific Applications,” IEEE Transactions on Parallel &
Distributed Systems.

–  T. Scogland, W. Feng, B. Rountree, B. de Supinski, “CoreTSAR: Core Task-Size Adapting Runtime,” IEEE
Transactions on Parallel & Distributed Systems.

–  J. Lou, Y. Xia, L. Luo, H. Luo, J. Lou, J. Edwards, F. Mueller, “OpenACC-based GPU Acceleration of a p-
multigrid Discontinuous Galerkin Method for Compressible Flows on 3D Unstructured Grids,” AIAA
Science and Technology Forum.

•  In Preparation
–  B. Pickering, C. Jackson, T. Scogland, W. Feng, C. Roy, “Directive-Based GPU Programming for

Computational Fluid Dynamics,” in preparation for Computers and Fluids, Aug. 2014.
–  J. Derlaga, T. Phillips, C. J. Roy, “SENSEI Computational Fluid Dynamics Code: A Case Study in Modern

Fortran Software Development,” in preparation for Journal of Aerospace Computing, Information, and
Communication, Aug. 2014.

–  K. Swirydowicz, E. de Sturler, X. Xu, and C. Roy, “Effective Solvers and Preconditioners on GPUs for CFD
Applications,” in preparation for Parallel Computing.

–  A. Amritkar, E. de Sturler, K. Swirydowicz, D. Tafti, K. Ahuja, “Recycling Krylov Subspaces for CFD
Applications,” in preparation for Computer Methods in Applied Mechanics and Engineering.

–  A. K. Grim McNally, M. Li, E. de Sturler, S. Gugercin, “Preconditioning Parameterized Linear Systems,” in
preparation for SIAM J. Scientific Computing.

