
Tool Chain For
Co-Design

Created by /
Part of the

Tom Scogland tom.scogland@vt.edu
SyNeRG lab: synergy.cs.vt.edu

0

http://tom.scogland.com/
mailto:tom.scogland@vt.edu
http://localhost:8080/synergy.cs.vt.edu

Why worry about the tool
chain?

Lets look at a simple dot
product.

Dot Product on CPU: C
double * dotP(double *a, double *b, size_t length){
 double result = 0.0;
 for(size_t i=0; i < length; i++){
 result += a[i] * b[i];
 }
 return result;
}

Dot Product on CPU:
OpenMP

double * dotP(double *a, double *b, size_t length){
 double result = 0.0;
#pragma omp parallel for reduction(+:result)
 for(size_t i=0; i < length; i++){
 result += a[i] * b[i];
 }
 return result;
}

Dot Product on GPU:
CUDA

__global__ void dotP(double *g_a, double *g_b, int *g_odata) {
 extern __shared__ int sdata[];
 // each thread loads one element from global to shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
 sdata[tid] = g_a[i] * g_b[i];
 __syncthreads();
 // do reduction in shared memory
 for(unsigned int s=1; s < blockDim.x ; s *= 2) {
 if (tid % (2*s) == 0) {
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }
 // write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}//Must be run 2-3 times to produce a final result

(Based on an example from "Optimizing Parallel Reduction in CUDA" by Mark Harris)

Library Dot Product
double * dotP(double *a, double *b, size_t length){
 double result = 0.0;
 accel_dotProd_reduce(a, b,
 {length,0,0}, {0,0,0}, {length,0,0},
 &result);
 return result;
}

Dot Product on GPU:
OpenACC

double * dotP(double *a, double *b, size_t length){
 double result = 0.0;
#pragma acc kernels for copyin(a[0:length],b[0:length]) reduction(+:result)
 for(size_t i=0; i < length; i++){
 result += a[i] * b[i];
 }
 return result;
}

OpenACC vs OpenMP
double * dotP(double *a, double *b, size_t length){
 double result = 0.0;
- #pragma omp parallel for reduction(+:result)
+ #pragma acc kernels for copyin(a[0:length],b[0:length]) reduction(+:result)
 for(size_t i=0; i < length; i++){
 result += a[i] * b[i];
 }
 return result;
}

Advantages to OpenACC
or OpenMP 4.0

Little to no alteration of core code is required
The CPU and GPU code are often the same
Directives are portable, supporting CPU, GPU and
potentially even FPGA devices given an appropriate
compiler

What's the Catch?

OpenACC is new and
evolving rapidly

Limitations to OpenACC
1. No support for atomic operations
2. Minimal support for routine calls
3. No device debugging support
4. Lack of support for deep memory copies
5. No automatic work-sharing across devices

The Upside of Rapid
Evolution

PGI 2014 Update Improvements
1. Atomics are accessible from Fortran OpenACC
2. Preliminary support for routine calls
3. CUDA Fortran and OpenACC device and host debugging
4. C-style 2d array copy support, a first step toward deep

copies

Device Debugging
Support

Before PGI 2014
OpenACC debugging is host-only
Device debugging can only check outputs

With PGI 2014 and Allinea DDT
Debugging on host and device with:

Breakpoints
Individual thread stepping
Memory watchpoints on all CUDA memory spaces

Device memory debugging
Inspect values and arrays in global and even shared
memory
Catch and debug out-of-range accesses

Deep Copies
Several projects, notably Sensei, have encountered the lack of

support for arrays where each element contains, or is, a
dynamic array.

Deep Copies
C Example

double ** a2 = (double**)calloc(y_length, sizeof(double*));
double ** b2 = (double**)calloc(y_length, sizeof(double*));

for (int i = 0; i < y_length; i++) {
 a2[i] = calloc(x_length, sizeof(double));
 b2[i] = calloc(x_length, sizeof(double));
}

#pragma acc kernels for copyin(a2[0:y_length][0:x_length],b2[0:y_length][0:x_length]) reduction(+:sum)
for (int i = 0; i < y_length; i++) {
 for (int j = 0; j < x_length; j++) {
 sum += a2[i][j] * b2[i][j];
 }
}

Deep Copies
Performance Consequences

Deep Copies
Performance Consequences

Note that the Y axis was log10, Contiguous is 483 times faster

Co-Design in the Tool
Chain

Collaborations with PGI and the
OpenMP Accelerator Working

Group

OpenACC Optimization
with PGI
Sensei Lite

Unexpected Data
Movement

Data movement is one of the largest causes of overhead in
heterogeneous applications

OpenACC reductions can be an unexpected source
Every region containing a reduction imposes a
synchronous data copy of the reduction variable back to
the host!

Sensei Lite uses a reduction for almost all kernels
Error residuals detect algorithm convergence
Are they all necessary?

By testing for convergence less often, a full run can enqueue
far more work between barriers.

Performance with
Infrequent Reductions

Targeting Multiple
Architectures with

OpenACC
OpenACC can, in principle, support:

CPUs
GPUs: NVIDIA and AMD
Co-processors: Xeon Phi, Tile64
Etc.

In practice, a single binary normally supports just one, and that
one is usually NVIDIA GPUs with the possible addition of the

host CPU.

PGI OpenACC -> AMD
Radeon OpenCL

In private beta until January 24th, 2013
PGI 14.1 marks the release of official support

AMD Radeon evaluation
for CFD

Required:
Re-targeting Sensei Lite to support multiple devices
Adding support for selecting multiple device types
Backing out non-portable optimizations:

Custom gang and vector sizes
Synchronization between iterations returns, to exchange
boundary values

Multi-GPU and AMD

B. P. Pickering, C. W. Jackson, T. R. W. Scogland, W.-C. Feng, and C. J. Roy, “Directive-Based GPU
Programming for Computational Fluid Dynamics,” AIAA Paper 2014-1131, 52nd Aerospace Sciences
Meeting, National Harbor, MD, January 13-17, 2014.

OpenMP 4.0
OpenACC is a target, and standard, of convenience.

OpenMP 4.0
OpenMP Accelerator directives are more likely to be long-

lasting, but do not offer support for certain critical
optimization tools.

OpenMP 4.0->4.1
We have been working directly with the OpenMP Accelerator
working group on improved support for features critical to the

performance of our designs including:
Support for unstructured data lifetimes
Asynchronous invocation of "target", or accelerator, regions
Task-dependency resolution across both host and device
tasks
Work-sharing across devices

Summary
The expressibility, stability and usability of the tool chain can
have a significant effect on rate of progress
Significant performance gains can be realized with directive-
based programming models
Neither OpenACC nor OpenMP 4.0 are perfect, but both
can provide real advantages, and are improving quickly

Questions?

