
Co-design of time stepping algorithms for large
aerodynamic simulations

AFOSR BRI 12-2640-06

Adrian Sandu1, Paul Tranquilli1, Hong Zhang1 and Ross Glandon1

1Computational Science Laboratory (CSL)
Department of Computer Science

Virginia Tech

February 7, 2014
AFOSR Workshop

Co-design of time stepping algorithms. Title. [1/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Challenges to solving large evolutionary PDEs
and co-design solution approaches I

1. Explicit time stepping: simple, scalable, CFL bounded

Adaptive mesh refinement reduces spatial numerical 
errors; however, the global time step is also reduced 
Nitrogen monoxide error levels (vertically averaged) after one simulated week 

UNC Applied Math, Sept. 16, 2011 

Δt 

Δx 

2. Implicit time integration:
I Unconditionally stable→ step size determined by accuracy only
I Huge nonlinear systems coupling all variables in the model at each time step
I Error estimation and step size control lead to additional data dependencies

3. Our algorithmic co-design goals:
I Identify and use minimal amount of implicitness
I Use only operations that are scalable/amenable to acceleration

Co-design of time stepping algorithms. Challenges. [2/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Challenges to solving large evolutionary PDEs
and co-design solution approaches II

Figure : Solution approach 1: separate the small stiff subspace from the non-stiff
subspace and use implicitness in the stiff subspace only: ROK, EXPK methods (Paul
Tranquilli)

Co-design of time stepping algorithms. Challenges. [3/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Challenges to solving large evolutionary PDEs
and co-design solution approaches III

Full Jacobian

From function f()

← From function g()

IMEX splitting

Figure : Solution approach 2: y′ = f(t, y) + g(t, y): Separate the stiff processes from
the non-stiff processes and use implicitness to treat the stiff processes only: IMEX
methods (Hong Zhang)

Co-design of time stepping algorithms. Challenges. [4/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Challenges to solving large evolutionary PDEs
and co-design solution approaches IV

Solution approach 3: use highly scalable Jacobian-vector operations for
efficient accelerated and distributed implementation (Ross Glandon)

I Parallel Burgers ODE function (local computation):

f ip:jpn =
1

2∆x


(
y
ip−1
n

)2 − (yip+1
n

)2(
y
ip:jp−2
n

)2 − (yip+2:jp
n

)2(
y
jp−1
n

)2 − (yjp+1
n

)2


I Scalable Jacobian-vector product (local computation):

(Jn v)
ip:jp =

1

∆x

 y
ip−1
n vip−1 − y

ip+1
n vip+1

y
ip:jp−2
n vip:jp−2 − y

ip+2:jp
n vip+2:jp

y
jp−1
n vjp−1 − y

jp+1
n vjp+1



Co-design of time stepping algorithms. Challenges. [5/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Rosenbrock methods require the solution of linear
systems only

I Initial value problem (semi-discrete PDE)

y′(t) = f(y), y(t0) = y0, t0 ≤ t ≤ tF , y(t), f(y) ∈ RN .

I Solution by an s-stage Rosenbrock method:

(I− hγJn) ki = h f

yn +

i−1∑
j=1

αijkj

+ hJn

i−1∑
j=1

γijkj ,

y1 = y0 +

s∑
j=1

biki .

I The Jacobian matrix, Jn = ∂f/∂y |y=yn
appears explicitly.

Co-design of time stepping algorithms. Rosenbrock schemes. [6/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Rosenbrock-W order conditions
I TW -trees (bi-colored, leaves full, empty vertices singly branched)
I Full nodes ∼ exact derivatives, empty nodes ∼ A.

T -tree TW -trees

j

k

l

fJKf
K
L f

L

−→

j
k

l

fJKf
K
L f

L

j
k

l

AJKf
K
L f

L

j
k

l

fJKAKLf
L

j
k

l

AJKAKLf
L

Co-design of time stepping algorithms. Rosenbrock schemes. [7/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Definition: ROK method in autonomous form

Arnoldi: compute H and V for KM (Jn, fn)

for i = 1 to s

Fi = f

yn +

i−1∑
j=1

αijkj


ψi = VT fi

λi = (IM×M − hγH)
−1

hψi + hH
i−1∑
j=1

γijλj


ki = Vλi + h (Fi −Vφi)

end for i

yn+1 = yn +

s∑
i=1

bi ki

Co-design of time stepping algorithms. Rosenbrock schemes. [8/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



The Krylov approximation property reduces the set of
relevant trees considerably

TW trees TK tree

j
k

l

fJKf
K
L f

L

j
k

l

AJKf
K
L f

L

j
k

l

fJKAKLf
L

j
k

l

AJKAKLf
L

−→
j
k

l

fJKf
K
L f

L

Co-design of time stepping algorithms. Rosenbrock schemes. [9/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



ROK methods
I ROK conditions up to order three ≡ ROS conditions
I There is one additional TK-tree and ROK condition for order four

j

k

l m

AJKf
K
LMf

LfM
∑
bjγjkαkmαkl = 0

Theorem (Type 1 order conditions)
A Rosenbrock-K method of type 1 has order p iff the underlying Krylov space
has dimension M ≥ p, and the following order conditions hold:∑

j

bj φj(t) =
1

γ(t)
∀ t ∈ T with ρ(t) ≤ p ,

∑
j

bj φj(t) = 0 ∀ t ∈ TK\T with ρ(t) ≤ p .

Co-design of time stepping algorithms. Rosenbrock schemes. [10/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Convergence and Stability

For accuracy:
I M is small and independent of problem size.

For stability:
I Intuitively M should be sufficiently large such that the Krylov space

contains the stiff subspace of the underlying problem (see also Weiner et
al)

I How to automatically choose M so that the method is stable is a topic of
ongoing work.

Co-design of time stepping algorithms. Rosenbrock schemes. [11/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Definition: LIKE method in autonomous form

Arnoldi: compute H and V for KM (Jn, fn)

for i = 1 to s

Fi = f

yn +

i−1∑
j=1

αijkj


ψi = VT fi

λi = ϕ(hγH)

hψi + hH
i−1∑
j=1

γijλj


ki = Vλi + h (Fi −Vφi)

end for i

yn+1 = yn +

s∑
i=1

bi ki

Co-design of time stepping algorithms. Rosenbrock schemes. [12/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



ROK methods outperform traditional ROS solvers on a
two dimensional shallow water test problem

10
0

10
1

10
210

−8

10
−6

10
−4

10
−2

10
0

10
2

CPU Time (secs)

E
rr

or

 

 

ROK4a, M = 8

ROK4p, M = 8

ROK4b, M = 8

ROS4, Fullspace

RODAS4, Fullspace

Figure : Performance comparison on shallow water equations using centered finite
differences on a 32× 32 cartesian grid, N = 3072.

Co-design of time stepping algorithms. Rosenbrock schemes. [13/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



LIKE methods outperform traditional exponential
solvers on a two dimensional shallow water test
problem

10
0

10
1

10
210

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Runtime (secs)

E
rr

or

 

 

expK
exp4
exp4K
erow4
erow4K

Figure : Performance comparison on shallow water equations using centered finite
differences on a 32× 32 cartesian grid, N = 3072.

Co-design of time stepping algorithms. Rosenbrock schemes. [14/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



IMplicit-EXplicit time stepping schemes I

I Challenges:
• Stiff problems Stiffness results from widely varying time scales, i.e., some

components of the solution decay much more rapidly than others
• Explicit methods are efficient for nonstiff problems; require extremely small

time steps for stiff problems
• Implicit methods allow for large time steps for stiff problems;

computationally expensive
I One way to attack stiff problems efficiently: IMEX method partition the system

into two part based on stiffness y′ = f(t, y) + g(t, y); treat stiff part implicitly while
nonstiff part explicitly

Co-design of time stepping algorithms. Introduction. [15/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



IMplicit-EXplicit time stepping schemes II

Full Jacobian

From function f()

← From function g()

IMEX splitting

I Existing IMEX families:
• IMEX Linear Multistep Method (poor stability)
• IMEX Runge-Kutta methods (order reduction)

I Goal: to develop new IMEX Methods with several properties:
• no order reduction
• good stability
• ...

Co-design of time stepping algorithms. Introduction. [16/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



IMEX DIMSIM

A two-way partitioned DIMSIM: (Â, B̂) implicit, (A,B) explicit

Yi = h

(
i−1∑
j=1

ai,j f(Yj) +
i∑

j=1

âi,j g(Yj)

)
+ y

[n−1]
i , i = 1, . . . , s ,

y
[n]
i = h

(
s∑

j=1

bi,j f(Yj) +
s∑

j=1

b̂i,j g(Yj)

)
+

r∑
j=1

vi,j y
[n−1]
j , i = 1, . . . , r .

Derivation: Assume

y = x+ z , x′ = f̃(x, z) = f(x+ z) , z′ = g̃(x, z) = g(x+ z) ,

we do not need to know what x and z are. It works as if the combined state y is
advanced through integration.
Starting procedure: Approximate hkx(k)(t0), hkz(k)(t0), using finite differences on
small step solutions.

Co-design of time stepping algorithms. IMEX DIMSIMs. [17/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Properties of IMEX DIMSIM

I High stage order Order. Order p, stage order q, number of external
stages r, number of internal stages s are related by p = q = r = s.

I Implicit part is L-stable and constrained explicit stability region is
maximized using optimization technique. DIMSIMs are constructed with
Runge-Kutta stability.

I No additional coupling condition.

Theorem (Zhang and Sandu, 2012)
I Partitioned DIMSIM has order p and stage order q = p m each

individual method has order p and stage order q = p.

I Partitioned DIMSIM has order p and stage order q = p− 1 m
each constituent method has order p and stage order q = p− 1.

Co-design of time stepping algorithms. IMEX DIMSIMs. [18/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Avoid order reduction
Consider the van der Pol equation (Boscarino, 2007)

d

dt

[
y
z

]
=

[
z
0

]
︸︷︷︸
f(y,z)

+

[
0

((1− y2)z − y)/ε

]
︸ ︷︷ ︸

g(y,z)

, 0 ≤ t ≤ 0.55139

y(0) = 2, z(0) = −2

3
+

10

81
ε− 292

2187
ε2 − 1814

19683
ε3 +O(ε4) .

10
−4

10
−3

10
−2

10
−1

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

Step size (h)

E
rr

o
r

 

 

4th−order IMEX DIMSIM

5th−order IMEX DIMSIM

4th−order IMEX RK

5th−order IMEX RK

(a) nonstiff case ε = 10−1

10
−4

10
−3

10
−2

10
−1

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Step size (h)

E
rr

o
r

 

 

4th−order IMEX DIMSIM
5th−order IMEX DIMSIM
4th−order IMEX RK
5th−order IMEX RK

(b) stiff case ε = 10−5

Co-design of time stepping algorithms. Experiments with IMEX-DIMSIM. [19/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Gravity waves I
GMSH-DG code (UCLouvain): discontinuous Galerkin method in space
discretization

Governed by the compressible
Euler equation

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu

∂t
+∇ · (ρuu+ pI) = −ρgêz

∂ρθ

∂t
+∇ · (ρθu) = 0

ρ : density
u : velocity
θ : potential temperature
I : a 2× 2 identity matrix
p : pressure (linearly related to ρθ)
The prognostic variables are
ρ, ρu, ρθ

θ′

Figure : Evolution of the gravity
wave: perturbation of the potential
temperature at the initial time (top),
after 450 seconds (middle) and after
900 seconds (bottom).

Co-design of time stepping algorithms. Experiments with IMEX-DIMSIM. [20/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Gravity waves III

10
−2

10
−1

10
0

10
1

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

Step size (h)

E
rr

o
r

 

 

2nd−order IMEX DIMSIM

3rd−order IMEX DIMSIM

2nd−order IMEX RK

3rd−order IMEX RK

(a) Convergence

10
0

10
1

10
2

10
3

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

CPU time [sec]

E
rr

o
r

 

 

2nd−order IMEX DIMSIM

3rd−order IMEX DIMSIM

2nd−order IMEX RK

3rd−order IMEX RK

(b) Work-precision diagram

Co-design of time stepping algorithms. Experiments with IMEX-DIMSIM. [22/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Parallelizing ROK methods I

We target the Rosenbrock-Krylov (ROK) class of methods.

I Implicit method
I Based on Rosenbrock implicit methods
I Uses a Krylov subspace method

I Inexpensive
I Requires only a linear solve
I Operates in a reduced space
I Matrix-free

Co-design of time stepping algorithms. Overview. [23/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Parallelizing ROK methods II

Sources of ROK methods’ advantages:
I Linearization inherited from Rosenbrock methods.
I Accuracy is not required in the solution to the linear system.
I Uses a Krylov subspace approximation to the Jacobian of the ODE.
I Approximates Jacobian vector products using a finite difference.

Co-design of time stepping algorithms. Overview. [24/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Notes about the multicore results

Experiments were performed on the gravity waves problem.
Three types of integrators were tested:

I ERK: an explicit Runge-Kutta method
I DIRK: a diagonally implicit Runge-Kutta method
I ROK: a Rosenbrock-Krylov method

Speedups are calculated using a serial implementation as a baseline.
Tests were performed on a quad socket machine using AMD Magny-Cours
CPUs with a total of 48 cores.

Co-design of time stepping algorithms. Multicore Results. [25/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Runtime for multicore parallel solvers on the gravity
waves problem

1 2 4 8 12 24 36 48
10

1

10
2

10
3

10
4

Number of cores

C
P

U
 ti

m
e 

[s
ec

]

 

 

DIRK3
ERK4
Rok4

Figure : Solver runtimes for various core counts.

Co-design of time stepping algorithms. Multicore Results. [26/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Slowdown for multicore parallel solvers on the gravity
waves problem

1 2 4 8 12 24 36 48
0

1

2

3

4

5

6

7

Number of cores

S
lo

w
do

w
n

 

 

DIRK3/Rok4
ERK4/Rok4

Figure : Slowdown of DIRK and ERK methods compared to the ROK solver.

Co-design of time stepping algorithms. Multicore Results. [27/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Parallel efficiency for multicore parallel solvers on the
gravity waves problem

0 5 10 15 20 25 30 35 40 45 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Number of cores

P
ar

al
le

l E
ffi

ci
en

cy

 

 

DIRK3
ERK4
ROK4

Figure : Parallel efficiency of the different solvers.

Co-design of time stepping algorithms. Multicore Results. [28/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Notes about the GPU results

Experiments were performed on the shallow water equations.
Two Arnoldi implementations were tested:

I cuKrylov: Basic cuBLAS implementation
I gtKrylov: Our optimized implementation

Speedups are calculated using a serial implementation as a baseline.
Tests were performed on a AMD Magny-Cours CPU and an NVIDIA Quadro
4000 GPU.

Co-design of time stepping algorithms. GPU Results. [29/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Right hand side speedup for the shallow water
equations problem on GPUs

10
3

10
4

10
5

10
6

10
75

10

15

20

25

30

Number of State Variables

F
un

ct
io

n 
S

pe
ed

up

Figure : GPU RHS speedup over serial CPU.

Co-design of time stepping algorithms. GPU Results. [30/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Total solver speedup for the shallow water equations
problem on GPUs

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

Number of Accurate Digits

S
pe

ed
up

 

 

32×32
32×32
64×64
64×64
128×128
128×128
256×256
256×256
512×512
512×512

Figure : GPU solver speedup over serial CPU.

Co-design of time stepping algorithms. GPU Results. [31/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Speedup animation for the shallow water equations
problem on GPUs

(a) GPU solution speed. (b) CPU solution speed.

Co-design of time stepping algorithms. GPU Results. [32/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]


	Title
	Challenges
	Rosenbrock schemes
	Introduction
	IMEX DIMSIMs
	Experiments with IMEX-DIMSIM
	Overview
	Multicore Results
	GPU Results

	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	1.30: 
	1.31: 
	1.32: 
	1.33: 
	1.34: 
	1.35: 
	1.36: 
	1.37: 
	1.38: 
	1.39: 
	1.40: 
	1.41: 
	1.42: 
	1.43: 
	1.44: 
	1.45: 
	1.46: 
	1.47: 
	1.48: 
	1.49: 
	1.50: 
	anm1: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	2.7: 
	2.8: 
	2.9: 
	2.10: 
	2.11: 
	2.12: 
	2.13: 
	2.14: 
	2.15: 
	2.16: 
	2.17: 
	2.18: 
	2.19: 
	2.20: 
	2.21: 
	2.22: 
	2.23: 
	2.24: 
	2.25: 
	2.26: 
	2.27: 
	2.28: 
	2.29: 
	2.30: 
	2.31: 
	2.32: 
	2.33: 
	2.34: 
	2.35: 
	2.36: 
	2.37: 
	2.38: 
	2.39: 
	2.40: 
	2.41: 
	2.42: 
	2.43: 
	2.44: 
	2.45: 
	2.46: 
	2.47: 
	2.48: 
	2.49: 
	2.50: 
	2.51: 
	2.52: 
	2.53: 
	2.54: 
	2.55: 
	2.56: 
	2.57: 
	2.58: 
	2.59: 
	2.60: 
	2.61: 
	2.62: 
	2.63: 
	2.64: 
	2.65: 
	2.66: 
	2.67: 
	2.68: 
	2.69: 
	2.70: 
	2.71: 
	2.72: 
	2.73: 
	2.74: 
	2.75: 
	2.76: 
	2.77: 
	2.78: 
	2.79: 
	2.80: 
	2.81: 
	2.82: 
	2.83: 
	2.84: 
	2.85: 
	2.86: 
	2.87: 
	2.88: 
	2.89: 
	2.90: 
	2.91: 
	2.92: 
	2.93: 
	2.94: 
	2.95: 
	2.96: 
	2.97: 
	2.98: 
	2.99: 
	2.100: 
	2.101: 
	2.102: 
	2.103: 
	2.104: 
	2.105: 
	2.106: 
	2.107: 
	2.108: 
	2.109: 
	2.110: 
	2.111: 
	2.112: 
	2.113: 
	2.114: 
	2.115: 
	2.116: 
	2.117: 
	2.118: 
	2.119: 
	2.120: 
	2.121: 
	2.122: 
	2.123: 
	2.124: 
	2.125: 
	2.126: 
	2.127: 
	2.128: 
	2.129: 
	2.130: 
	2.131: 
	2.132: 
	2.133: 
	2.134: 
	2.135: 
	2.136: 
	2.137: 
	2.138: 
	2.139: 
	2.140: 
	2.141: 
	2.142: 
	2.143: 
	2.144: 
	2.145: 
	2.146: 
	2.147: 
	2.148: 
	2.149: 
	2.150: 
	2.151: 
	2.152: 
	2.153: 
	2.154: 
	2.155: 
	2.156: 
	2.157: 
	2.158: 
	2.159: 
	2.160: 
	2.161: 
	2.162: 
	2.163: 
	2.164: 
	2.165: 
	2.166: 
	2.167: 
	2.168: 
	2.169: 
	2.170: 
	2.171: 
	2.172: 
	2.173: 
	2.174: 
	2.175: 
	2.176: 
	2.177: 
	2.178: 
	2.179: 
	2.180: 
	2.181: 
	2.182: 
	2.183: 
	2.184: 
	2.185: 
	2.186: 
	2.187: 
	2.188: 
	2.189: 
	2.190: 
	2.191: 
	2.192: 
	2.193: 
	2.194: 
	2.195: 
	2.196: 
	2.197: 
	2.198: 
	2.199: 
	2.200: 
	2.201: 
	2.202: 
	2.203: 
	2.204: 
	2.205: 
	2.206: 
	2.207: 
	2.208: 
	2.209: 
	2.210: 
	2.211: 
	2.212: 
	2.213: 
	2.214: 
	2.215: 
	2.216: 
	2.217: 
	2.218: 
	2.219: 
	2.220: 
	2.221: 
	2.222: 
	2.223: 
	2.224: 
	2.225: 
	2.226: 
	2.227: 
	2.228: 
	2.229: 
	2.230: 
	2.231: 
	2.232: 
	2.233: 
	2.234: 
	2.235: 
	2.236: 
	2.237: 
	2.238: 
	2.239: 
	2.240: 
	2.241: 
	2.242: 
	2.243: 
	2.244: 
	2.245: 
	2.246: 
	2.247: 
	2.248: 
	2.249: 
	2.250: 
	2.251: 
	2.252: 
	2.253: 
	2.254: 
	2.255: 
	2.256: 
	2.257: 
	2.258: 
	2.259: 
	2.260: 
	2.261: 
	2.262: 
	2.263: 
	2.264: 
	2.265: 
	2.266: 
	2.267: 
	2.268: 
	2.269: 
	2.270: 
	2.271: 
	2.272: 
	2.273: 
	2.274: 
	2.275: 
	2.276: 
	2.277: 
	2.278: 
	2.279: 
	2.280: 
	2.281: 
	2.282: 
	2.283: 
	2.284: 
	2.285: 
	2.286: 
	2.287: 
	2.288: 
	2.289: 
	2.290: 
	2.291: 
	2.292: 
	2.293: 
	2.294: 
	2.295: 
	2.296: 
	2.297: 
	2.298: 
	2.299: 
	2.300: 
	2.301: 
	2.302: 
	2.303: 
	2.304: 
	2.305: 
	2.306: 
	2.307: 
	2.308: 
	2.309: 
	2.310: 
	2.311: 
	2.312: 
	2.313: 
	2.314: 
	2.315: 
	2.316: 
	2.317: 
	2.318: 
	2.319: 
	2.320: 
	2.321: 
	2.322: 
	2.323: 
	2.324: 
	2.325: 
	2.326: 
	2.327: 
	2.328: 
	2.329: 
	2.330: 
	2.331: 
	2.332: 
	2.333: 
	2.334: 
	2.335: 
	2.336: 
	2.337: 
	2.338: 
	2.339: 
	2.340: 
	2.341: 
	2.342: 
	2.343: 
	2.344: 
	2.345: 
	2.346: 
	2.347: 
	2.348: 
	2.349: 
	2.350: 
	2.351: 
	2.352: 
	2.353: 
	2.354: 
	2.355: 
	2.356: 
	anm2: 


