Co-design of time stepping algorithms for large aerodynamic simulations
 AFOSR BRI 12-2640-06

Adrian Sandu ${ }^{1}$, Paul Tranquilli ${ }^{1}$, Hong Zhang ${ }^{1}$ and Ross Glandon ${ }^{1}$
${ }^{1}$ Computational Science Laboratory (CSL)
Department of Computer Science Virginia Tech

February 7, 2014
AFOSR Workshop

Challenges to solving large evolutionary PDEs and co-design solution approaches I

1. Explicit time stepping: simple, scalable, CFL bounded

2. Implicit time integration:

- Unconditionally stable \rightarrow step size determined by accuracy only
- Huge nonlinear systems coupling all variables in the model at each time step
- Error estimation and step size control lead to additional data dependencies

3. Our algorithmic co-design goals:

- Identify and use minimal amount of implicitness
- Use only operations that are scalable/amenable to acceleration

Challenges to solving large evolutionary PDEs and co-design solution approaches II

Figure : Solution approach 1: separate the small stiff subspace from the non-stiff subspace and use implicitness in the stiff subspace only: ROK, EXPK methods (Paul Tranquilli)

Challenges to solving large evolutionary PDEs and co-design solution approaches III

Figure : Solution approach 2: $y^{\prime}=f(t, y)+g(t, y)$: Separate the stiff processes from the non-stiff processes and use implicitness to treat the stiff processes only: IMEX methods (Hong Zhang)

Challenges to solving large evolutionary PDEs and co-design solution approaches IV

Solution approach 3: use highly scalable Jacobian-vector operations for efficient accelerated and distributed implementation (Ross Glandon)

- Parallel Burgers ODE function (local computation):

$$
f_{n}^{i_{p}: j_{p}}=\frac{1}{2 \Delta x}\left[\begin{array}{c}
\left(\mathbf{y}_{p}^{i_{p}-1}\right)^{2}-\left(\mathbf{y}_{n}^{i_{p}+1}\right)^{2} \\
\left(\mathbf{y}_{n}^{p_{n}: j_{p}-2}\right)^{2}-\left(\mathbf{y}_{n}^{i_{p}+2: j_{p}}\right)^{2} \\
\left(\mathbf{y}_{n}^{j_{p}-1}\right)^{2}-\left(\mathbf{y}_{n}^{j_{p}+1}\right)^{2}
\end{array}\right]
$$

- Scalable Jacobian-vector product (local computation):

$$
\left(J_{n} v\right)^{i_{p}: j_{p}}=\frac{1}{\Delta x}\left[\begin{array}{c}
\mathbf{y}_{n}^{i_{p}-1} v^{i_{p}-1}-\mathbf{y}_{n}^{i_{p}+1} v^{i_{p}+1} \\
\mathbf{y}_{n}^{i_{p}: j_{p}-2} v^{i_{p}: j_{p}-2}-\mathbf{y}_{n}^{i_{p}+2: j_{p}} v^{i_{p}+2: j_{p}} \\
\mathbf{y}_{n}^{j_{p}-1} v^{j_{p}-1}-\mathbf{y}_{n}^{j_{p}+1} v^{j_{p}+1}
\end{array}\right]
$$

Rosenbrock methods require the solution of linear systems only

- Initial value problem (semi-discrete PDE)

$$
y^{\prime}(t)=f(y), \quad y\left(t_{0}\right)=y_{0}, \quad t_{0} \leq t \leq t_{\mathrm{F}}, \quad y(t), f(y) \in \mathbb{R}^{N} .
$$

- Solution by an s-stage Rosenbrock method:

$$
\begin{aligned}
\left(\mathbf{I}-h \gamma \mathbf{J}_{n}\right) k_{i} & =h f\left(y_{n}+\sum_{j=1}^{i-1} \alpha_{i j} k_{j}\right)+h \mathbf{J}_{n} \sum_{j=1}^{i-1} \gamma_{i j} k_{j}, \\
y_{1} & =y_{0}+\sum_{j=1}^{s} b_{i} k_{i} .
\end{aligned}
$$

- The Jacobian matrix, $\mathbf{J}_{n}=\partial f /\left.\partial y\right|_{y=y_{n}}$ appears explicitly.

Rosenbrock-W order conditions

- TW-trees (bi-colored, leaves full, empty vertices singly branched)
- Full nodes \sim exact derivatives, empty nodes \sim A.

Definition: ROK method in autonomous form

Arnoldi: compute \mathbf{H} and \mathbf{V} for $\mathcal{K}_{M}\left(\mathbf{J}_{n}, f_{n}\right)$

for $i=1$ to s

$$
\begin{aligned}
F_{i} & =f\left(y_{n}+\sum_{j=1}^{i-1} \alpha_{i j} k_{j}\right) \\
\psi_{i} & =\mathbf{V}^{T} f_{i} \\
\lambda_{i} & =\left(\mathbf{I}_{M \times M}-h \gamma \mathbf{H}\right)^{-1}\left(h \psi_{i}+h \mathbf{H} \sum_{j=1}^{i-1} \gamma_{i j} \lambda_{j}\right) \\
k_{i} & =\mathbf{V} \lambda_{i}+h\left(F_{i}-\mathbf{V} \phi_{i}\right)
\end{aligned}
$$

end for i
$y_{n+1}=y_{n}+\sum_{i=1}^{s} b_{i} k_{i}$

The Krylov approximation property reduces the set of relevant trees considerably

$T W$ trees	
	$f_{K}^{J} f_{L}^{K} f^{L}$
	$\mathbf{A}_{J K} f_{L}^{K} f^{L}$
	$f_{K}^{J} \mathbf{A}_{K L} f^{L}$
	$\mathbf{A}_{J K} \mathbf{A}_{K L} f^{L}$

ROK methods

- ROK conditions up to order three \equiv ROS conditions
- There is one additional $T K$-tree and ROK condition for order four

	$A_{J K} f_{L M}^{K} f^{L} f^{M}$	$\sum b_{j} \gamma_{j k} \alpha_{k m} \alpha_{k l}$		

Theorem (Type 1 order conditions)

A Rosenbrock-K method of type 1 has order p iff the underlying Krylov space has dimension $M \geq p$, and the following order conditions hold:

$$
\begin{gathered}
\sum_{j} b_{j} \phi_{j}(t)=\frac{1}{\gamma(t)} \quad \forall t \in T \text { with } \rho(t) \leq p \\
\sum_{j} b_{j} \phi_{j}(t)=0 \quad \forall t \in T K \backslash T \quad \text { with } \rho(t) \leq p
\end{gathered}
$$

Convergence and Stability

For accuracy:

- M is small and independent of problem size.

For stability:

- Intuitively M should be sufficiently large such that the Krylov space contains the stiff subspace of the underlying problem (see also Weiner et al)
- How to automatically choose M so that the method is stable is a topic of ongoing work.

Definition: LIKE method in autonomous form

Arnoldi: compute \mathbf{H} and \mathbf{V} for $\mathcal{K}_{M}\left(\mathbf{J}_{n}, f_{n}\right)$ for $i=1$ to s

$$
\begin{aligned}
F_{i} & =f\left(y_{n}+\sum_{j=1}^{i-1} \alpha_{i j} k_{j}\right) \\
\psi_{i} & =\mathbf{V}^{T} f_{i} \\
\lambda_{i} & =\varphi(h \gamma \mathbf{H})\left(h \psi_{i}+h \mathbf{H} \sum_{j=1}^{i-1} \gamma_{i j} \lambda_{j}\right) \\
k_{i} & =\mathbf{V} \lambda_{i}+h\left(F_{i}-\mathbf{V} \phi_{i}\right)
\end{aligned}
$$

end for i

$$
y_{n+1}=y_{n}+\sum_{i=1}^{s} b_{i} k_{i}
$$

ROK methods outperform traditional ROS solvers on a two dimensional shallow water test problem

Figure : Performance comparison on shallow water equations using centered finite differences on a 32×32 cartesian grid, $N=3072$.

LIKE methods outperform traditional exponential solvers on a two dimensional shallow water test problem

Figure : Performance comparison on shallow water equations using centered finite differences on a 32×32 cartesian grid, $N=3072$.

IMplicit-EXplicit time stepping schemes I

- Challenges:
- Stiff problems Stiffness results from widely varying time scales, i.e., some components of the solution decay much more rapidly than others
- Explicit methods are efficient for nonstiff problems; require extremely small time steps for stiff problems
- Implicit methods allow for large time steps for stiff problems; computationally expensive
- One way to attack stiff problems efficiently: IMEX method partition the system into two part based on stiffness $y^{\prime}=f(t, y)+g(t, y)$; treat stiff part implicitly while nonstiff part explicitly

IMplicit-EXplicit time stepping schemes II

- Existing IMEX families:
- IMEX Linear Multistep Method (poor stability)
- IMEX Runge-Kutta methods (order reduction)
- Goal: to develop new IMEX Methods with several properties:
- no order reduction
- good stability
- ...

February 7, 2014, AFOSR Workshop.

IMEX DIMSIM

A two-way partitioned DIMSIM: ($\widehat{\mathbf{A}}, \widehat{\mathbf{B}})$ implicit, (A, B) explicit

$$
\begin{aligned}
Y_{i} & =h\left(\sum_{j=1}^{i-1} a_{i, j} f\left(Y_{j}\right)+\sum_{j=1}^{i} \widehat{a}_{i, j} g\left(Y_{j}\right)\right)+y_{i}^{[n-1]}, \quad i=1, \ldots, s, \\
y_{i}^{[n]} & =h\left(\sum_{j=1}^{s} b_{i, j} f\left(Y_{j}\right)+\sum_{j=1}^{s} \widehat{b}_{i, j} g\left(Y_{j}\right)\right)+\sum_{j=1}^{r} v_{i, j} y_{j}^{[n-1]}, i=1, \ldots, r .
\end{aligned}
$$

Derivation: Assume

$$
y=x+z, x^{\prime}=\tilde{f}(x, z)=f(x+z), z^{\prime}=\tilde{g}(x, z)=g(x+z) \text {, }
$$

we do not need to know what x and z are. It works as if the combined state y is advanced through integration.
Starting procedure: Approximate $h^{k} x^{(k)}\left(t_{0}\right), h^{k} z^{(k)}\left(t_{0}\right)$, using finite differences on small step solutions.

Properties of IMEX DIMSIM

- High stage order Order. Order p, stage order q, number of external stages r, number of internal stages s are related by $p=q=r=s$.
- Implicit part is L-stable and constrained explicit stability region is maximized using optimization technique. DIMSIMs are constructed with Runge-Kutta stability.
- No additional coupling condition.

Theorem (Zhang and Sandu, 2012)

- Partitioned DIMSIM has order p and stage order $q=p$ individual method has order p and stage order $q=p$.
- Partitioned DIMSIM has order p and stage order $q=p-1$ each constituent method has order p and stage order $q=p-1$.

Avoid order reduction

Consider the van der Pol equation (Boscarino, 2007)

$$
\begin{aligned}
& \frac{d}{d t}\left[\begin{array}{l}
y \\
z
\end{array}\right]=\underbrace{\left[\begin{array}{l}
z \\
0
\end{array}\right]}_{f(y, z)}+\underbrace{\left[\begin{array}{c}
0 \\
\left(\left(1-y^{2}\right) z-y\right) / \epsilon
\end{array}\right]}_{g(y, z)}, \quad 0 \leq t \leq 0.55139 \\
& y(0)=2, \quad z(0)=-\frac{2}{3}+\frac{10}{81} \epsilon-\frac{292}{2187} \epsilon^{2}-\frac{1814}{19683} \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right) .
\end{aligned}
$$

(b) stiff case $\epsilon=10^{-5}$
(a) nonstiff case $\epsilon=10^{-1}$

Gravity waves I

GMSH-DG code (UCLouvain): discontinuous Galerkin method in space discretization

Governed by the compressible Euler equation

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u}) & =0 \\
\frac{\partial \rho \mathbf{u}}{\partial t}+\nabla \cdot(\rho \mathbf{u u}+p \mathbf{I}) & =-\rho g \widehat{\mathbf{e}}_{\mathbf{z}} \\
\frac{\partial \rho \theta}{\partial t}+\nabla \cdot(\rho \theta \mathbf{u}) & =0
\end{aligned}
$$

ρ : density
u : velocity
θ : potential temperature
I : a 2×2 identity matrix
p : pressure (linearly related to $\rho \theta$)
The prognostic variables are $\rho, \rho \mathbf{u}, \rho \theta$

Figure: Evolution of the gravity wave: perturbation of the potential temperature at the initial time (top), after 450 seconds (middle) and after 900 seconds (bottom).

Gravity waves III

Parallelizing ROK methods I

We target the Rosenbrock-Krylov (ROK) class of methods.

- Implicit method
- Based on Rosenbrock implicit methods
- Uses a Krylov subspace method
- Inexpensive
- Requires only a linear solve
- Operates in a reduced space
- Matrix-free

Parallelizing ROK methods II

Sources of ROK methods' advantages:

- Linearization inherited from Rosenbrock methods.
- Accuracy is not required in the solution to the linear system.
- Uses a Krylov subspace approximation to the Jacobian of the ODE.
- Approximates Jacobian vector products using a finite difference.

Notes about the multicore results

Experiments were performed on the gravity waves problem.
Three types of integrators were tested:

- ERK: an explicit Runge-Kutta method
- DIRK: a diagonally implicit Runge-Kutta method
- ROK: a Rosenbrock-Krylov method

Speedups are calculated using a serial implementation as a baseline. Tests were performed on a quad socket machine using AMD Magny-Cours CPUs with a total of 48 cores.

Runtime for multicore parallel solvers on the gravity waves problem

Figure : Solver runtimes for various core counts.

Slowdown for multicore parallel solvers on the gravity waves problem

Figure : Slowdown of DIRK and ERK methods compared to the ROK solver.

Parallel efficiency for multicore parallel solvers on the gravity waves problem

Figure : Parallel efficiency of the different solvers.

Notes about the GPU results

Experiments were performed on the shallow water equations.
Two Arnoldi implementations were tested:

- cuKrylov: Basic cuBLAS implementation
- gtKrylov: Our optimized implementation

Speedups are calculated using a serial implementation as a baseline. Tests were performed on a AMD Magny-Cours CPU and an NVIDIA Quadro 4000 GPU.

Right hand side speedup for the shallow water equations problem on GPUs

Figure : GPU RHS speedup over serial CPU.

Total solver speedup for the shallow water equations problem on GPUs

Figure : GPU solver speedup over serial CPU.

Speedup animation for the shallow water equations problem on GPUs

