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Challenges to solving large evolutionary PDEs
and co-design solution approaches I

1. Explicit time stepping: simple, scalable, CFL bounded

Adaptive mesh refinement reduces spatial numerical 
errors; however, the global time step is also reduced 
Nitrogen monoxide error levels (vertically averaged) after one simulated week 

UNC Applied Math, Sept. 16, 2011 
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2. Implicit time integration:
I Unconditionally stable→ step size determined by accuracy only
I Huge nonlinear systems coupling all variables in the model at each time step
I Error estimation and step size control lead to additional data dependencies

3. Our algorithmic co-design goals:
I Identify and use minimal amount of implicitness
I Use only operations that are scalable/amenable to acceleration
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Challenges to solving large evolutionary PDEs
and co-design solution approaches II

Figure : Solution approach 1: separate the small stiff subspace from the non-stiff
subspace and use implicitness in the stiff subspace only: ROK, EXPK methods (Paul
Tranquilli)
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Challenges to solving large evolutionary PDEs
and co-design solution approaches III

Full Jacobian

From function f()

← From function g()

IMEX splitting

Figure : Solution approach 2: y′ = f(t, y) + g(t, y): Separate the stiff processes from
the non-stiff processes and use implicitness to treat the stiff processes only: IMEX
methods (Hong Zhang)
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Challenges to solving large evolutionary PDEs
and co-design solution approaches IV

Solution approach 3: use highly scalable Jacobian-vector operations for
efficient accelerated and distributed implementation (Ross Glandon)

I Parallel Burgers ODE function (local computation):
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I Scalable Jacobian-vector product (local computation):
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Rosenbrock methods require the solution of linear
systems only

I Initial value problem (semi-discrete PDE)

y′(t) = f(y), y(t0) = y0, t0 ≤ t ≤ tF , y(t), f(y) ∈ RN .

I Solution by an s-stage Rosenbrock method:

(I− hγJn) ki = h f

yn +

i−1∑
j=1

αijkj

+ hJn

i−1∑
j=1

γijkj ,

y1 = y0 +

s∑
j=1

biki .

I The Jacobian matrix, Jn = ∂f/∂y |y=yn
appears explicitly.
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Rosenbrock-W order conditions
I TW -trees (bi-colored, leaves full, empty vertices singly branched)
I Full nodes ∼ exact derivatives, empty nodes ∼ A.

T -tree TW -trees
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Definition: ROK method in autonomous form

Arnoldi: compute H and V for KM (Jn, fn)

for i = 1 to s

Fi = f

yn +

i−1∑
j=1

αijkj


ψi = VT fi

λi = (IM×M − hγH)
−1

hψi + hH
i−1∑
j=1

γijλj


ki = Vλi + h (Fi −Vφi)

end for i

yn+1 = yn +

s∑
i=1

bi ki
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The Krylov approximation property reduces the set of
relevant trees considerably

TW trees TK tree
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ROK methods
I ROK conditions up to order three ≡ ROS conditions
I There is one additional TK-tree and ROK condition for order four
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Theorem (Type 1 order conditions)
A Rosenbrock-K method of type 1 has order p iff the underlying Krylov space
has dimension M ≥ p, and the following order conditions hold:∑

j

bj φj(t) =
1

γ(t)
∀ t ∈ T with ρ(t) ≤ p ,

∑
j

bj φj(t) = 0 ∀ t ∈ TK\T with ρ(t) ≤ p .
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Convergence and Stability

For accuracy:
I M is small and independent of problem size.

For stability:
I Intuitively M should be sufficiently large such that the Krylov space

contains the stiff subspace of the underlying problem (see also Weiner et
al)

I How to automatically choose M so that the method is stable is a topic of
ongoing work.
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Definition: LIKE method in autonomous form

Arnoldi: compute H and V for KM (Jn, fn)

for i = 1 to s

Fi = f

yn +

i−1∑
j=1

αijkj


ψi = VT fi

λi = ϕ(hγH)

hψi + hH
i−1∑
j=1

γijλj


ki = Vλi + h (Fi −Vφi)

end for i

yn+1 = yn +

s∑
i=1

bi ki
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ROK methods outperform traditional ROS solvers on a
two dimensional shallow water test problem
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Figure : Performance comparison on shallow water equations using centered finite
differences on a 32× 32 cartesian grid, N = 3072.
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LIKE methods outperform traditional exponential
solvers on a two dimensional shallow water test
problem
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Figure : Performance comparison on shallow water equations using centered finite
differences on a 32× 32 cartesian grid, N = 3072.
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IMplicit-EXplicit time stepping schemes I

I Challenges:
• Stiff problems Stiffness results from widely varying time scales, i.e., some

components of the solution decay much more rapidly than others
• Explicit methods are efficient for nonstiff problems; require extremely small

time steps for stiff problems
• Implicit methods allow for large time steps for stiff problems;

computationally expensive
I One way to attack stiff problems efficiently: IMEX method partition the system

into two part based on stiffness y′ = f(t, y) + g(t, y); treat stiff part implicitly while
nonstiff part explicitly
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IMplicit-EXplicit time stepping schemes II

Full Jacobian

From function f()

← From function g()

IMEX splitting

I Existing IMEX families:
• IMEX Linear Multistep Method (poor stability)
• IMEX Runge-Kutta methods (order reduction)

I Goal: to develop new IMEX Methods with several properties:
• no order reduction
• good stability
• ...
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IMEX DIMSIM

A two-way partitioned DIMSIM: (Â, B̂) implicit, (A,B) explicit

Yi = h

(
i−1∑
j=1

ai,j f(Yj) +
i∑

j=1

âi,j g(Yj)

)
+ y

[n−1]
i , i = 1, . . . , s ,

y
[n]
i = h

(
s∑

j=1

bi,j f(Yj) +
s∑

j=1

b̂i,j g(Yj)

)
+

r∑
j=1

vi,j y
[n−1]
j , i = 1, . . . , r .

Derivation: Assume

y = x+ z , x′ = f̃(x, z) = f(x+ z) , z′ = g̃(x, z) = g(x+ z) ,

we do not need to know what x and z are. It works as if the combined state y is
advanced through integration.
Starting procedure: Approximate hkx(k)(t0), hkz(k)(t0), using finite differences on
small step solutions.
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Properties of IMEX DIMSIM

I High stage order Order. Order p, stage order q, number of external
stages r, number of internal stages s are related by p = q = r = s.

I Implicit part is L-stable and constrained explicit stability region is
maximized using optimization technique. DIMSIMs are constructed with
Runge-Kutta stability.

I No additional coupling condition.

Theorem (Zhang and Sandu, 2012)
I Partitioned DIMSIM has order p and stage order q = p m each

individual method has order p and stage order q = p.

I Partitioned DIMSIM has order p and stage order q = p− 1 m
each constituent method has order p and stage order q = p− 1.
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Avoid order reduction
Consider the van der Pol equation (Boscarino, 2007)

d
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(a) nonstiff case ε = 10−1
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(b) stiff case ε = 10−5
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Gravity waves I
GMSH-DG code (UCLouvain): discontinuous Galerkin method in space
discretization

Governed by the compressible
Euler equation

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu

∂t
+∇ · (ρuu+ pI) = −ρgêz

∂ρθ

∂t
+∇ · (ρθu) = 0

ρ : density
u : velocity
θ : potential temperature
I : a 2× 2 identity matrix
p : pressure (linearly related to ρθ)
The prognostic variables are
ρ, ρu, ρθ

θ′

Figure : Evolution of the gravity
wave: perturbation of the potential
temperature at the initial time (top),
after 450 seconds (middle) and after
900 seconds (bottom).
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Gravity waves III
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Parallelizing ROK methods I

We target the Rosenbrock-Krylov (ROK) class of methods.

I Implicit method
I Based on Rosenbrock implicit methods
I Uses a Krylov subspace method

I Inexpensive
I Requires only a linear solve
I Operates in a reduced space
I Matrix-free

Co-design of time stepping algorithms. Overview. [23/32]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



Parallelizing ROK methods II

Sources of ROK methods’ advantages:
I Linearization inherited from Rosenbrock methods.
I Accuracy is not required in the solution to the linear system.
I Uses a Krylov subspace approximation to the Jacobian of the ODE.
I Approximates Jacobian vector products using a finite difference.
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Notes about the multicore results

Experiments were performed on the gravity waves problem.
Three types of integrators were tested:

I ERK: an explicit Runge-Kutta method
I DIRK: a diagonally implicit Runge-Kutta method
I ROK: a Rosenbrock-Krylov method

Speedups are calculated using a serial implementation as a baseline.
Tests were performed on a quad socket machine using AMD Magny-Cours
CPUs with a total of 48 cores.
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Runtime for multicore parallel solvers on the gravity
waves problem
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Figure : Solver runtimes for various core counts.
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Slowdown for multicore parallel solvers on the gravity
waves problem
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Figure : Slowdown of DIRK and ERK methods compared to the ROK solver.
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Parallel efficiency for multicore parallel solvers on the
gravity waves problem
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Figure : Parallel efficiency of the different solvers.
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Notes about the GPU results

Experiments were performed on the shallow water equations.
Two Arnoldi implementations were tested:

I cuKrylov: Basic cuBLAS implementation
I gtKrylov: Our optimized implementation

Speedups are calculated using a serial implementation as a baseline.
Tests were performed on a AMD Magny-Cours CPU and an NVIDIA Quadro
4000 GPU.
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Right hand side speedup for the shallow water
equations problem on GPUs
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Figure : GPU RHS speedup over serial CPU.
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Total solver speedup for the shallow water equations
problem on GPUs
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Speedup animation for the shallow water equations
problem on GPUs

(a) GPU solution speed. (b) CPU solution speed.
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