
1

GPU Acceleration of the SENSEI CFD

Code Suite

Chris Roy, Brent Pickering, Chip Jackson, Joe Derlaga, Xiao Xu
Aerospace and Ocean Engineering

Primary Collaborators:

Tom Scogland, Wu Feng (Computer Science)
Kasia Swirydowicz, Arielle Grim-McNally, Eric de Sturler (Math)
Ross Glandon, Paul Tranquilli, Adrian Sandu (Computer Science)

Virginia Tech, Blacksburg, VA, 24061

SENSEI CFD Code

SENSEI: Structured Euler/Navier-Stokes Explicit Implicit

• SENSEI: solves Euler and Navier-Stokes equations
– 2D/3D multi-block structured grids
– Finite volume discretization
– Currently for steady-state problems

• Explicit: Euler explicit and multi-stage Runge-Kutta
• Implicit: Euler implicit with linear solves via basic GMRES

– Written in modern Fortran 03/08 and employs object-oriented
features such as derived types and procedure pointers

– Currently uses OpenMP and MPI for parallelism
– Employs Array-of-Struct data structures (problems for GPUs…)

• SENSEI leverages another grant on error estimation and

control for CFD (in AFOSR Computational Math)
2

SENSEI-Lite CFD Code

Preliminary testing of directive-based parallelism
employs simplified version: SENSEI-Lite

• 2D Navier-Stokes equations

• Finite difference discretization on Cartesian grids

• Employs same artificial compressibility approach
as SENSEI for extending compressible CFD code
to incompressible flows

• Avoids Array-of-Struct data structures

3

Collaborations with
SENSEI Code Suite

4

Joe Derlaga
(PhD Student)

Xiao Xu
(AOE/Math Postdoc)

Brent Pickering
(PhD Student)

Collaborations w/ Math

Collaborations w/ Eric de Sturler (Math) and his
group for expertise in parallel implicit solvers

• SENSEI only has basic GMRES with very limited
preconditioners

• Work has begun to incorporate advanced
parallel solvers and preconditioners into SENSEI

• Work is near completion for serial and parallel
solvers and preconditioners in SENSEI-Lite

5

Collaborations w/ CS (#1)

Collaborations w/ Adrian Sandu (CS) and his
group for expertise in implicit/explicit time
integrators for unsteady flows

• MAV application requires large variations in cell
size from freestream to near-wall boundary layer

• Explicit schemes tend to be more naturally
parallel, but suffer from severe stability limits for
small cells

• Initial collaborations begun using SENSEI-Lite
6

Collaborations w/ CS (#2)

Collaborations w/ Wu Feng (CS) and his group for
expertise in OpenACC directives and hardware /
software optimization

• Initial work has focused on explicit version of
SENSEI-Lite

• Tight collaborations with Wu Feng and Tom
Scogland resulted in AIAA Paper at SciTech
(journal submission soon)

• Our collaborations have establish potential paths
forward for GPU parallelization of full SENSEI

7

Introduction

Directive Based Programming provides an alternative to platform
specific languages such as CUDA C.

• Directives or pragmas (in Fortran or C/C++) permit re-use of existing

source codes—ideally with no modifications.
– Maintain a single cross-platform code base.
– Easily incorporate legacy code

• Shifts re-factoring burden to compiler.

– Compiler vendors can extend functionality to new architectures.
– Source code expresses algorithm, not implementation.

• Directive based APIs are already familiar to many computational

scientists (OpenMP).

8

Efficient GPU Data Storage

• SOA preferred over AOS on GPU.
• Permits contiguous access on GPUs and SIMD hardware.
• Avoids need for scatter-gather.

9

Pressure

Node 1

U-velocity

Node 1

V-velocity

Node 1

Pressure

Node 2

U-velocity

Node 2

V-velocity

Node 2

Pressure

Node 3

U-velocity

Node 3

V-velocity

Node 3

Pressure

Node 1

Pressure

Node 2

Pressure

Node 3

U-velocity

Node 1

U-velocity

Node 2

U-velocity

Node 3

V-velocity

Node 1

V-velocity

Node 2

V-velocity

Node 3

Array of Struct (AOS)

Struct of Array (SOA)

Layouts in linear memory for a sequence of 3 grid nodes (3-DOF per node). Red
nodes represent memory access for a three-point stencil.

• Solves 2D incompressible Navier Stokes using the artificial
compressibility method (Chorin).
– Nonlinear system with 3 equations (cons. of mass, x+y momentum).
– Fourth derivative damping (artificial viscosity).
– Steady state formulation.

1

𝛽2

𝜕𝑝

𝜕𝑡
+

𝜕𝑢𝑗

𝜕𝑥𝑗
− 𝜆𝑗Δ𝑥𝑗𝐶𝑗

𝜕4𝑝

𝜕𝑥𝑗
4 = 0

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
+

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
− 𝜈

𝜕2𝑢𝑖

𝜕𝑥𝑗
2 = 0

10

• Compressibility term 𝛽 is calculated from local flow
characteristics.

(Cons. of mass)

(Momentum)

CFD Code: SENSEI-Lite

CFD Code: SENSEI-Lite

• Structured grid FDM with second order accurate spatial
discretization.
– 3 D.O.F. per node.
– 5-point and 9-point stencils require 19 data loads per node
 (152B double precision, 76B with single precision)
– 130 FLOPS per node, including 3 FP divide and 2 full-precision square

roots.

• Explicit time integration (forward Euler).
– Keeps the performance focus on the stencil operations—not linear

solvers.
– Data parallel algorithm stores two solution copies (time step n and n+1).

• Verified code using Method of Manufactured Solutions.

• Relatively simple code Easy to modify and experiment with.

11

Benchmark case: 2D lid driven cavity flow.
• All cases used fixed-size square domain, with lid velocity 1 𝑚/𝑠, Re 100,

and density constant 1 𝑘𝑔/𝑚3.
• Uniform Cartesian computational grids were used, ranging in size from

128 × 128 to 8192 × 8192 nodes. (Max size: 200 million DOF)

12

CFD Code: SENSEI-Lite

Preliminary Code Modifications

• Reduce memory traffic and eliminate temporary arrays.
• Fuse loops having only local dependencies (e.g., artificial viscosity

and residual).
• Eliminate unnecessary mem-copy.

13

0

1

2

3

4

5

6

7

8

9

10

Original Code Loop fusion (remove
temporary arrays)

Loop fusion+ Replace
copy with pointer swap

G
FL

O
P

S

OpenACC Performance

• Evaluated on three models of NVIDIA GPU representing two
microarchitectures (Fermi, Kepler).

• Compiler = PGI 13.6 and 13.10.

• For NVIDIA case, compiler automatically generated binaries for
Compute Capability 1.x, 2.x, and 3.x devices.

• Experimented with manual optimization of the OpenACC code.

14

OpenACC Performance

Manual Performance Tuning

• Compiler defaulted to 64 × 4 2D thread-block configuration, but
this could be overridden using the vector clause.

15

• On CUDA devices, launch configuration can have a
significant effect on performance.
– Utilization of shared memory and registers.
– Can lead to variations in occupancy.
– Shape of the thread blocks can affect the layout of the

shared data structures possible bank conflicts.

• Used a fixed size problem of 4097x4097 nodes (50
million DOF), and explored full parameter space of
thread-block dimensions.

OpenACC Performance

Manual Performance Tuning

(Double Precision, 4097x4097 cavity)

16

C2075 K20c

OpenACC Performance

• Default and optimized thread-block dimensions—PGI 13.6

• Double Precision

17

C2075 K20c

OpenACC Performance

Single vs Double Precision

• Single prec. maximum throughput 2-3x greater than double prec.

• 32-bit data types require half the memory bandwidth, half the

register file and half the shared memory space of 64-bit types.

• Trivial to switch in Fortran by editing the precision parameter used
for the real data type.
– Like SENSEI, INS code uses ISO C binding module precision was

always c_double or c_float.

• For the explicit INS code, single precision was adequate for
converged solution.
– Lost about 7 significant digits, equivalent to round-off error.
– May be more of a problem with implicit algorithms.

18

OpenACC Performance

19

C2075 K20c

Manual Performance Tuning

(Single Precision, 4097x4097 cavity)

OpenACC Performance

Summary

20

Tesla C2075
(Fermi)

Default
Block Size
(GFLOPS)

Optimal
Block Size
(GFLOPS)

Speedup
(%)

Double Precision
(GFLOPS)

44.6 47.9 7.4%

Single Precision
(GFLOPS)

64.5 75.4 16.9%

Speedup
(%)

44.6% 57.4%

Optimal
Thread-block

Dimension

Double
Precision

Single
Precision

C2075 (Fermi) 16x4
(16x8)

16x6

K20c (Kepler) 16x8 32x4 Tesla K20c
(Kepler)

Default
Block Size
(GFLOPS)

Optimal
Block Size
(GFLOPS)

Speedup
(%)

Double Precision
(GFLOPS)

68.5 90.6 32.3%

Single Precision
(GFLOPS)

149.2 153.5 2.9%

Speedup
(%)

117.8% 69.4%

OpenACC Performance

Multiple GPU

• PGI 13.10 beta.

• Used domain decomposition. OpenMP parallel region with one GPU

per thread.

• Boundary values are transferred between regions on each iteration.
– Incurs thread-synch overhead and requires data transfer across PCIe.
– OpenACC does not expose mechanism for direct GPU to GPU copy.

• 13.10 permits use of AMD GPUs, such as the HD 7990.
– 7990 is equivalent to two 7970 “South Islands” dies on a single card.
– Requires multi-GPU code to make use of both simultaneously.

 21

OpenACC Performance

Multiple GPU

22

44.8

88.4

126.0

171.5

75.5

146.3

119.2

216.9

0.0

50.0

100.0

150.0

200.0

250.0

1 2 3 4

G
FL

O
P

S

Number of GPU dies

NVIDIA c2070 NVIDIA k20x

AMD Radeon 7990

OpenACC Performance

OpenACC speedup over single CPU thread

23

0

5

10

15

20

25

OpenACC
(NVIDIA
C2075)

OpenACC
(NVIDIA
K20C)

OpenACC
(NVIDIA
K20X)

OpenACC
(AMD 7990

(1 of 2 dies))

0

5

10

15

20

25

30

35

OpenACC
(NVIDIA
C2075)

OpenACC
(NVIDIA
K20C)

OpenACC
(NVIDIA
K20X)

OpenACC
(AMD 7990

(1 of 2 dies))

CPU version compiled from the same source code using PGI 13.6.

vs. Sandy Bridge (E5-2687W) vs. Nehalem (X5560)

OpenACC Performance

OpenACC (GPU) performance vs OpenMP (CPU) performance

24

0

20

40

60

80

100

120

OpenMP (Xeon
X5560, 8T/8C)

OpenMP (Xeon
E5-2687W,
16T/16C)

OpenACC
(NVIDIA C2075)

OpenACC
(NVIDIA K20C)

OpenACC
(NVIDIA K20X)

OpenACC (AMD
7990 [1 of 2

dies])

G
FL

O
P

S

OpenACC Performance

Advantage of software managed cache on GPU for
computation on structured grids avoids conflict misses.

25

Cache conflict
misses.

K20c Nehalem 16T/8C

Uniform
performance.

Summary and Path Forward

• OpenACC provided good performance on GPU, and in conjunction
with OpenMP directives permitted a single code base to serve CPU
and GPU platforms → robust to rapid changes is hardware
platforms. However…

• Decided not to apply the OpenACC 1.0 API to SENSEI.

– Requires too many alterations to current code base.

– Restricts use of object-oriented features in modern Fortran.

• Looking to other emerging standards that also support GPUs and
other accelerators: OpenACC 2.0 and OpenMP 4.0.

26

Publications

27

• J. M. Derlaga, T. S. Phillips, and C. J. Roy, “SENSEI Computational Fluid
Dynamics Code: A Case Study in Modern Fortran Software Development,”
AIAA Paper 2013-2450, 21st AIAA Computational Fluid Dynamics
Conference, San Diego, CA, June 24-27, 2013.

• B. P. Pickering, C. W. Jackson, T. R. W. Scogland, W.-C. Feng, and C. J. Roy,
“Directive-Based GPU Programming for Computational Fluid Dynamics,”
AIAA Paper 2014-1131, 52nd Aerospace Sciences Meeting, National
Harbor, MD, January 13-17, 2014.

 Both are in preparation for journal submission

