

GPU Acceleration of the SENSEI CFD Code Suite

Chris Roy, Brent Pickering, Chip Jackson, Joe Derlaga, Xiao Xu Aerospace and Ocean Engineering

Primary Collaborators: Tom Scogland, Wu Feng (Computer Science) Kasia Swirydowicz, Arielle Grim-McNally, Eric de Sturler (Math) Ross Glandon, Paul Tranquilli, Adrian Sandu (Computer Science)

Virginia Tech, Blacksburg, VA, 24061

SENSEI CFD Code

SENSEI: Structured Euler/Navier-Stokes Explicit Implicit

- SENSEI: solves Euler and Navier-Stokes equations
 - 2D/3D multi-block structured grids
 - Finite volume discretization
 - Currently for steady-state problems
 - Explicit: Euler explicit and multi-stage Runge-Kutta
 - Implicit: Euler implicit with linear solves via basic GMRES
 - Written in *modern* Fortran 03/08 and employs object-oriented features such as derived types and procedure pointers
 - Currently uses OpenMP and MPI for parallelism
 - Employs Array-of-Struct data structures (problems for GPUs...)
- SENSEI leverages another grant on error estimation and control for CFD (in AFOSR Computational Math)

Preliminary testing of directive-based parallelism employs simplified version: SENSEI-Lite

- 2D Navier-Stokes equations
- Finite difference discretization on Cartesian grids
- Employs same artificial compressibility approach as SENSEI for extending compressible CFD code to incompressible flows
- Avoids Array-of-Struct data structures

Collaborations with SENSEI Code Suite

4

Collaborations w/ Eric de Sturler (Math) and his group for expertise in parallel implicit solvers

- SENSEI only has basic GMRES with very limited preconditioners
- Work has begun to incorporate advanced parallel solvers and preconditioners into SENSEI
- Work is near completion for serial and parallel solvers and preconditioners in SENSEI-Lite

Collaborations w/ CS (#1)

Collaborations w/ Adrian Sandu (CS) and his group for expertise in implicit/explicit time integrators for unsteady flows

- MAV application requires large variations in cell size from freestream to near-wall boundary layer
- Explicit schemes tend to be more naturally parallel, but suffer from severe stability limits for small cells
- Initial collaborations begun using SENSEI-Lite

Collaborations w/ Wu Feng (CS) and his group for expertise in OpenACC directives and hardware / software optimization

- Initial work has focused on explicit version of SENSEI-Lite
- Tight collaborations with Wu Feng and Tom Scogland resulted in AIAA Paper at SciTech (journal submission soon)
- Our collaborations have establish potential paths forward for GPU parallelization of full SENSEI

Introduction

Directive Based Programming provides an alternative to platform specific languages such as CUDA C.

- Directives or pragmas (in Fortran or C/C++) permit re-use of existing source codes—*ideally with no modifications*.
 - Maintain a single cross-platform code base.
 - Easily incorporate legacy code
- Shifts re-factoring burden to compiler.
 - Compiler vendors can extend functionality to new architectures.
 - Source code expresses algorithm, not implementation.
- Directive based APIs are already familiar to many computational scientists (OpenMP).

Efficient GPU Data Storage

- SOA preferred over AOS on GPU.
- Permits contiguous access on GPUs and SIMD hardware.
- Avoids need for *scatter-gather*.

Array of Struct (AOS)

Pressure	U-velocity	V-velocity	Pressure	U-velocity	V-velocity	Pressure	U-velocity	V-velocity
Node 1	Node 1	Node 1	Node 2	Node 2	Node 2	Node 3	Node 3	Node 3

Struct of Array (SOA)

Pressure	Pressure	Pressure	U-velocity	U-velocity	U-velocity	V-velocity	V-velocity	V-velocity
Node 1	Node 2	Node 3	Node 1	Node 2	Node 3	Node 1	Node 2	Node 3

Layouts in linear memory for a sequence of 3 grid nodes (3-DOF per node). Red nodes represent memory access for a three-point stencil.

CFD Code: SENSEI-Lite

- Solves 2D incompressible Navier Stokes using the artificial compressibility method (Chorin).
 - Nonlinear system with 3 equations (cons. of mass, x+y momentum).
 - Fourth derivative damping (artificial viscosity).
 - Steady state formulation.

$$\frac{1}{\beta^{2}}\frac{\partial p}{\partial t} + \frac{\partial u_{j}}{\partial x_{j}} - \lambda_{j}\Delta x_{j}C_{j}\frac{\partial^{4}p}{\partial x_{j}^{4}} = 0 \qquad \text{(Cons. of mass)}$$
$$\frac{\partial u_{i}}{\partial t} + u_{j}\frac{\partial u_{i}}{\partial x_{j}} + \frac{1}{\rho}\frac{\partial p}{\partial x_{i}} - \nu\frac{\partial^{2}u_{i}}{\partial x_{j}^{2}} = 0 \qquad \text{(Momentum)}$$

• Compressibility term β is calculated from local flow characteristics.

CFD Code: SENSEI-Lite

- Structured grid FDM with second order accurate spatial discretization.
 - 3 D.O.F. per node.
 - 5-point and 9-point stencils require 19 data loads per node (152B double precision, 76B with single precision)
 - 130 FLOPS per node, including 3 FP divide and 2 full-precision square roots.
- *Explicit* time integration (forward Euler).
 - Keeps the performance focus on the stencil operations—not linear solvers.
 - Data parallel algorithm stores two solution copies (time step n and n+1).
- Verified code using Method of Manufactured Solutions.
- Relatively simple code \rightarrow Easy to modify and experiment with.

CFD Code: SENSEI-Lite

Benchmark case: 2D lid driven cavity flow.

- All cases used fixed-size square domain, with lid velocity 1 m/s, Re 100, and density constant $1 kg/m^3$.
- Uniform Cartesian computational grids were used, ranging in size from 128×128 to 8192×8192 nodes. (Max size: 200 million DOF)

- Reduce memory traffic and eliminate temporary arrays.
- Fuse loops having only *local dependencies* (e.g., artificial viscosity and residual).
- Eliminate unnecessary mem-copy.

- Evaluated on three models of NVIDIA GPU representing two microarchitectures (Fermi, Kepler).
- Compiler = PGI 13.6 and 13.10.
- For NVIDIA case, compiler automatically generated binaries for *Compute Capability 1.x, 2.x, and 3.x* devices.
- Experimented with manual optimization of the OpenACC code.

Manual Performance Tuning

• Compiler defaulted to 64×4 2D thread-block configuration, but this could be overridden using the *vector* clause.

- On CUDA devices, launch configuration can have a significant effect on performance.
 - Utilization of shared memory and registers.
 - Can lead to variations in occupancy.
 - Shape of the thread blocks can affect the layout of the shared data structures \rightarrow possible bank conflicts.
 - Used a fixed size problem of 4097x4097 nodes (50 million DOF), and explored full parameter space of thread-block dimensions.

Manual Performance Tuning

(Double Precision, 4097x4097 cavity)

- Default and optimized thread-block dimensions—PGI 13.6
- Double Precision

Single vs Double Precision

- Single prec. maximum throughput 2-3x greater than double prec.
- 32-bit data types require half the memory bandwidth, half the register file and half the shared memory space of 64-bit types.
- Trivial to switch in Fortran by editing the *precision* parameter used for the *real* data type.
 - Like SENSEI, INS code uses ISO C binding module → precision was always c_double or c_float.
- For the *explicit* INS code, single precision was adequate for converged solution.
 - Lost about 7 significant digits, equivalent to round-off error.
 - May be more of a problem with implicit algorithms.

Manual Performance Tuning

(Single Precision, 4097x4097 cavity)

Double Precision

(GFLOPS)

Single Precision

(GFLOPS)

Speedup

(%)

OpenACC Performance

Tesla C2075 (Fermi)	Default Block Size (GFLOPS)	Optimal Block Size (GFLOPS)	Speedup (%)
Double Precision (GFLOPS)	44.6	47.9	7.4%
Single Precision (GFLOPS)	64.5	75.4	16.9%
Speedup (%)	44.6%	57.4%	
Tesla K20c (Kepler)	Default Block Size (GFLOPS)	Optimal Block Size (GFLOPS)	Speedup (%)

68.5

149.2

117.8%

Summary

32.3%

2.9%

90.6

153.5

69.4%

Optimal Thread-block Dimension	Double Precision	Single Precision
C2075 (Fermi)	16x4 (16x8)	16x6
K20c (Kepler)	16x8	32x4

Multiple GPU

- PGI 13.10 beta.
- Used domain decomposition. OpenMP parallel region with one GPU per thread.
- Boundary values are transferred between regions on each iteration.
 - Incurs thread-synch overhead and requires data transfer across PCIe.
 - OpenACC does not expose mechanism for direct GPU to GPU copy.
- 13.10 permits use of AMD GPUs, such as the HD 7990.
 - 7990 is equivalent to two 7970 "South Islands" dies on a single card.
 - Requires multi-GPU code to make use of both simultaneously.

Multiple GPU

OpenACC speedup over single CPU thread

CPU version compiled from the *same source code* using PGI 13.6.

OpenACC (GPU) performance vs OpenMP (CPU) performance

Advantage of *software managed* cache on GPU for computation on structured grids \rightarrow avoids conflict misses.

Summary and Path Forward

- OpenACC provided good performance on GPU, and in conjunction with OpenMP directives permitted a *single code base* to serve CPU and GPU platforms → robust to rapid changes is hardware platforms. *However...*
- Decided **not** to apply the OpenACC 1.0 API to SENSEI.
 - Requires too many alterations to current code base.
 - Restricts use of object-oriented features in modern Fortran.
- Looking to other emerging standards that also support GPUs and other accelerators: OpenACC 2.0 and OpenMP 4.0.

Publications

- J. M. Derlaga, T. S. Phillips, and C. J. Roy, "SENSEI Computational Fluid Dynamics Code: A Case Study in Modern Fortran Software Development," AIAA Paper 2013-2450, 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, June 24-27, 2013.
- B. P. Pickering, C. W. Jackson, T. R. W. Scogland, W.-C. Feng, and C. J. Roy, "Directive-Based GPU Programming for Computational Fluid Dynamics," AIAA Paper 2014-1131, 52nd Aerospace Sciences Meeting, National Harbor, MD, January 13-17, 2014.
- Both are in preparation for journal submission