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SENSEI CFD Code 

SENSEI: Structured Euler/Navier-Stokes Explicit Implicit 
 

• SENSEI: solves Euler and Navier-Stokes equations 
– 2D/3D multi-block structured grids 
– Finite volume discretization 
– Currently for steady-state problems 

• Explicit: Euler explicit and multi-stage Runge-Kutta 
• Implicit: Euler implicit with linear solves via basic GMRES 

– Written in modern Fortran 03/08 and employs object-oriented 
features such as derived types and procedure pointers 

– Currently uses OpenMP and MPI for parallelism 
– Employs Array-of-Struct data structures (problems for GPUs…) 

 
• SENSEI leverages another grant on error estimation and 

control for CFD (in AFOSR Computational Math) 
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SENSEI-Lite CFD Code 

Preliminary testing of directive-based parallelism 
employs simplified version: SENSEI-Lite 

• 2D Navier-Stokes equations 

• Finite difference discretization on Cartesian grids 

• Employs same artificial compressibility approach 
as SENSEI for extending compressible CFD code 
to incompressible flows 

• Avoids Array-of-Struct data structures 
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Collaborations with 
SENSEI Code Suite 

4 

Joe Derlaga 
(PhD Student) 

 

 

 

Xiao Xu 
(AOE/Math Postdoc) 

 

 

 

 

Brent Pickering 
(PhD Student) 



Collaborations w/ Math 

Collaborations w/ Eric de Sturler (Math) and his 
group for expertise in parallel implicit solvers 

• SENSEI only has basic GMRES with very limited 
preconditioners 

• Work has begun to incorporate advanced 
parallel solvers and preconditioners into SENSEI 

• Work is near completion for serial and parallel 
solvers and preconditioners in SENSEI-Lite 
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Collaborations w/ CS (#1) 

Collaborations w/ Adrian Sandu (CS) and his 
group for expertise in implicit/explicit time 
integrators for unsteady flows 

• MAV application requires large variations in cell 
size from freestream to near-wall boundary layer 

• Explicit schemes tend to be more naturally 
parallel, but suffer from severe stability limits for 
small cells  

• Initial collaborations begun using SENSEI-Lite 
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Collaborations w/ CS (#2) 

Collaborations w/ Wu Feng (CS) and his group for 
expertise in OpenACC directives and hardware / 
software optimization 

• Initial work has focused on explicit version of 
SENSEI-Lite 

• Tight collaborations with Wu Feng and Tom 
Scogland resulted in AIAA Paper at SciTech 
(journal submission soon) 

• Our collaborations have establish potential paths 
forward for GPU parallelization of full SENSEI 
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Introduction 

Directive Based Programming provides an alternative to platform 
specific languages such as CUDA C. 
 
• Directives or pragmas (in Fortran or C/C++) permit re-use of existing 

source codes—ideally with no modifications. 
– Maintain a single cross-platform code base. 
– Easily incorporate legacy code 

 
• Shifts re-factoring burden to compiler. 

– Compiler vendors can extend functionality to new architectures. 
– Source code expresses algorithm, not implementation. 

 
• Directive based APIs are already familiar to many computational 

scientists (OpenMP). 
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Efficient GPU Data Storage 

• SOA preferred over AOS on GPU. 
• Permits contiguous access on GPUs and SIMD hardware. 
• Avoids need for scatter-gather. 
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• Solves 2D incompressible Navier Stokes using the artificial 
compressibility method (Chorin).  
– Nonlinear system with 3 equations (cons. of mass, x+y momentum). 
– Fourth derivative damping (artificial viscosity). 
– Steady state formulation. 
 

1

𝛽2

𝜕𝑝

𝜕𝑡
+  

𝜕𝑢𝑗

𝜕𝑥𝑗
− 𝜆𝑗Δ𝑥𝑗𝐶𝑗

𝜕4𝑝

𝜕𝑥𝑗
4 = 0 

 
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
+

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
− 𝜈

𝜕2𝑢𝑖

𝜕𝑥𝑗
2 = 0 

 

 
 

 
10 

• Compressibility term 𝛽 is calculated from local flow 
characteristics. 

(Cons. of mass) 

(Momentum) 

CFD Code: SENSEI-Lite 



CFD Code: SENSEI-Lite 

• Structured grid FDM with second order accurate spatial 
discretization. 
– 3 D.O.F. per node. 
– 5-point and 9-point stencils require 19 data loads per node  
     (152B double precision, 76B with single precision) 
– 130 FLOPS per node, including 3 FP divide and 2 full-precision square 

roots. 
 

• Explicit time integration (forward Euler). 
– Keeps the performance focus on the stencil operations—not linear 

solvers. 
– Data parallel algorithm stores two solution copies (time step n and n+1). 

 

• Verified code using Method of Manufactured Solutions. 
 

• Relatively simple code  Easy to modify and experiment with. 
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Benchmark case: 2D lid driven cavity flow. 
• All cases used fixed-size square domain, with lid velocity 1 𝑚/𝑠, Re 100, 

and density constant 1 𝑘𝑔/𝑚3. 
• Uniform Cartesian computational grids were used, ranging in size from 

128 × 128 to 8192 × 8192 nodes. (Max size: 200 million DOF) 
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CFD Code: SENSEI-Lite 



Preliminary Code Modifications 

• Reduce memory traffic and eliminate temporary arrays. 
• Fuse loops having only  local dependencies (e.g., artificial viscosity 

and residual). 
• Eliminate unnecessary mem-copy. 
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OpenACC Performance 

• Evaluated on three models of NVIDIA GPU representing two 
microarchitectures (Fermi, Kepler). 

• Compiler = PGI 13.6 and 13.10. 

• For NVIDIA case, compiler automatically generated binaries for 
Compute Capability 1.x, 2.x, and 3.x devices. 

• Experimented with manual optimization of the OpenACC  code. 

 

 

 

 

14 



OpenACC Performance 

Manual Performance Tuning 
 

• Compiler defaulted to 64 × 4 2D thread-block configuration, but 
this could be overridden using the vector clause.  
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• On CUDA devices, launch configuration can have a 
significant effect on performance. 
– Utilization of shared memory and registers. 
– Can lead to variations in occupancy. 
– Shape of the thread blocks can affect the layout of the 

shared data structures  possible bank conflicts. 
 

• Used a fixed size problem of 4097x4097 nodes (50 
million DOF), and explored full parameter space of 
thread-block dimensions. 

 
 



OpenACC Performance 

Manual Performance Tuning 

(Double Precision, 4097x4097 cavity) 
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C2075 K20c 



OpenACC Performance 

• Default and optimized thread-block dimensions—PGI 13.6 

• Double Precision 
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C2075 K20c 



OpenACC Performance 

Single vs Double Precision 
 

• Single prec. maximum throughput 2-3x greater than double prec. 
 
• 32-bit data types require half the memory bandwidth, half the 

register file and half the shared memory space of 64-bit types.  
 

• Trivial to switch in Fortran by editing the precision parameter used 
for the real data type. 
– Like SENSEI, INS code uses ISO C binding  module precision was 

always c_double or c_float. 
 

• For the explicit INS code, single precision was adequate for 
converged solution. 
– Lost about 7 significant digits, equivalent to round-off error. 
– May be more of a problem with implicit algorithms. 
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OpenACC Performance 
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C2075 K20c 

Manual Performance Tuning 

(Single Precision, 4097x4097 cavity) 

 

 

 



OpenACC Performance 

Summary 
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Tesla C2075 
(Fermi) 

Default 
Block Size 
(GFLOPS) 

Optimal 
Block Size 
(GFLOPS) 

Speedup 
(%) 

Double Precision 
(GFLOPS) 

44.6  47.9  7.4% 

Single Precision 
(GFLOPS) 

64.5  75.4  16.9% 

Speedup 
(%) 

44.6% 57.4%   

Optimal 
Thread-block 

Dimension 

Double 
Precision 

Single 
Precision 

C2075 (Fermi) 16x4 
(16x8) 

16x6 

K20c (Kepler) 16x8 32x4 Tesla K20c 
(Kepler) 

Default 
Block Size 
(GFLOPS) 

Optimal 
Block Size 
(GFLOPS) 

Speedup 
(%) 

Double Precision 
(GFLOPS) 

68.5  90.6  32.3% 

Single Precision 
(GFLOPS) 

149.2  153.5  2.9% 

Speedup 
(%) 

117.8% 69.4%   



OpenACC Performance 

Multiple GPU 
 

• PGI 13.10 beta. 
 
• Used domain decomposition. OpenMP parallel region with one GPU 

per thread.  
 

• Boundary values are transferred between regions on each iteration. 
– Incurs thread-synch overhead and requires data transfer across PCIe. 
– OpenACC does not expose mechanism for direct GPU to GPU copy. 
 

• 13.10 permits use of AMD GPUs, such as the HD 7990. 
– 7990 is equivalent to two 7970 “South Islands” dies on a single card. 
– Requires multi-GPU code to make use of both simultaneously. 

 
 21 



OpenACC Performance 

Multiple GPU 
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OpenACC Performance 

OpenACC speedup over single CPU thread 
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OpenACC Performance 

OpenACC (GPU) performance vs OpenMP (CPU) performance 
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OpenACC Performance 

Advantage of software managed cache on GPU for 
computation on structured grids  avoids conflict misses. 
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Summary and Path Forward 

• OpenACC provided good performance on GPU, and in conjunction 
with OpenMP directives permitted a single code base to serve CPU 
and GPU platforms → robust to rapid changes is hardware 
platforms. However… 

 

• Decided not to apply the OpenACC 1.0 API to SENSEI. 

– Requires too many alterations to current code base. 

– Restricts use of object-oriented features in modern Fortran. 

 

• Looking to other emerging standards that also support GPUs and 
other accelerators: OpenACC 2.0 and OpenMP 4.0.  

 

 
26 



Publications 

27 

• J. M. Derlaga, T. S. Phillips, and C. J. Roy, “SENSEI Computational Fluid 
Dynamics Code: A Case Study in Modern Fortran Software Development,” 
AIAA Paper 2013-2450, 21st AIAA Computational Fluid Dynamics 
Conference, San Diego, CA, June 24-27, 2013. 

• B. P. Pickering, C. W. Jackson, T. R. W. Scogland, W.-C. Feng, and C. J. Roy, 
“Directive-Based GPU Programming for Computational Fluid Dynamics,” 
AIAA Paper 2014-1131, 52nd Aerospace Sciences Meeting, National 
Harbor, MD, January 13-17, 2014. 

 

 Both are in preparation for journal submission 


