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FLOOD project

 Distributed stream-processing compiler & RTS
« Basic plan:
» support JIT compilation and adaptation

» use EDSL compilers for accelerators & vectorization
» combine benefits of e.g. Streamlt & Twitter Storm

o JIT compiling
M
(p(r)g;il;%gg dataflow Stream RTS
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Embedded Languages:
Lots of these — and growing

Python — Copperhead, Continuum.io, Theano
Haskell — Accelerate, Nikola, Paraiso, FeldSpar
Scala — Delite/OptiML

JavaScript — RiverTrail (Intel)

LUA - Torch 7

C++ — Intel ArBB (now defunct)

Standalone — Harlan, Halide, Streamit
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Embedded Languages:
Lots of these — and growing

« Haskell — Accelerate

» Since 2009
. Orig.inally: multi-dimm array language
 Partially formally verified

Type-safe Runtime Code Generation: Accelerate to LLVM

Trevor L. McDonell' Manuel M. T. Chakravarty?  Vinod Grover>  RyanR. Newton'
Lndiana University Bloomington 2Jnpjversity of New South Wales 3NVIDIA Corporation




Accelerate hello world

—Mmbedded

language arrays |
| —rom Accelerate liorary
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dotp xs ys = fold (+) @ ( zipWith (*) xs ys )



Switching to and from streams

dotpSeq xs ys =
collect
$ foldSeqE (+) ©
$ zipWithSeqE (x) (toSeqE xs) (toSeqE ys)

* (Streaming Accelerate - with collaborators at UNSW in Sydney)




Current Architecture

Control layer
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Eventual Architecture

Control layer
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Current Architecture

Control layer <> CompaCtNF &
Haskell HPX [

Network
Communication

UbiProf
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Ongoing work on adaptation

« Multi-device - cpus/gpus

Histogram N-Body Benchmark
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fold feae = let(z,y) =split; e&in
zipWith f (fold f e z) (fold f e y)
H o map fae = let(x,y) = split; & in
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generate o = concat; (generate o|o; := |0; ,
backend opts generate oo 1= [07/2]
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CompactNF

do ¢ ¢ newCompact (buildTree x)
sendCompact sock c

Efficient Communicatio

: with Compact No
o (See ICFP'15) s

N and Collectiop
rmal Formg

Giovannij Campaongl

1 pagna® 5
Abhishek Kulkarn;2 mer Agacan®  Ahmeq El-Hassany?

Ryan Newton?2 y

* Puts data in a managed heap region
 GHC uses a block structured heap

« Send via RDMA

» relocatable if necessary

 (similar to region based me mgmt)
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UbiProf

* Cheaper dynamic probes (v.s. DTrace)
» Uses Intel's __ notify_intrinsic

* For streaming: create a labeled graph
» Edges: data volume
» Vertices: compute latency

* (See poster)




Compiler & Runtime Techniques for
Adaptive Stream Processing

Ryan Newton, Joel Svensson, Trevor McDonell,
Michael Vollmer, Omer Sinan Agacan, Buddhika Chamith

{rrnewton, joelsven, mcdonelt, vollmerm, oagacan, budkahaw}@indiana.edu

Introduction

Distributed stream processing requires a combination
of technologies to monitor workloads and map them
onto the local resources of worker machines. Here
we highlight three sub-projects that address distinct
aspects of this problem:

* Compile: JIT compiling dataflow graphs for
available parallel architectures (Accelerate)

e Communicate: Sending irregular data efficiently
between nodes (Compact Normal Form)

* Monitor: Profiling native-code programs based on
binary self-modification and cross-modification
(Ubiprof)

Accelerate

In a distributed execution plan, a subgraph of a
stream dataflow graph must map onto the hardware
of a worker node and achieve throughput. Our
approach is a DSL JIT compiler called Accelerate.

* Accelerate [6] takes a graph of data-
transformations and generates CUDA or LLVM
code to run on CPU or GPU.

* Accelerate can launch concurrent GPU kernels on
each new input (stream element) that arrives

* Accelerate is a (partially) formally verified
compiler [4]

Compact Normal Form (CNF)
Distributed stream processing systems (like Twitter
Storm) must route streams over network links. Data
(de)serialization consumes significant time,
especially for irregular and pointer-based data
structures.

For immutable data in high-level languages, we
explore an alternate heap representation: Compact
Normal Form [1]. CNF allows regions of the heap to
directly be:

 sent over the network (including RDMA)
« stored to disk
 skipped over by GC as one object

We have implemented CNF for the Glasgow Haskell
Compiler (GHC). Our total speedup for sending,
e.g., large binary trees through the network with CNF
can exceed 16X:

-~ bintree (Binary)
16 bintree (Java)
pointtree (Binary)
8- -+~ pointtree (Java)

Factor slow down relative to CNF
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Likewise, reading twitter data from disk is faster
when it can be mmap’d directly into GHC’s heap,
whether reading one record or all of them:

UbiProf

Profiling streaming dataflow graphs for scheduling
purposes has different requirements than traditional
time profiling.

measure latency

Processing Processing
JEEE—
step step
L

measure frequency,
size in bytes

Capturing processing latency and data size requires
sampling intervals rather than instants, and injecting
custom code to compute data structure sizes. Thus
dynamic probes, such as in DTrace, are appropriate.
Yet overheads for these probes are high. Thus we

are exploring new approaches with an order of
magnitude improvement in probe cost, and a probing
infrastructure that is:

* Intra-process, user space

* Multicore scalable

* Free when not engaged

We have also used these probes to build a general
profiling tool, UbiProf [5]. UbiProf dynamically
activates and deactivates probes to stay under a given
allowable overhed, using a backoff approach for hot
functions to disable their own probes.

UbiProf controls a backoff threshold and the
frequency with which deactivated probes are
reactivated (sampling epoch).

Overhead Perl-5.8.7 Backoff
thresh:
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