
6/1/2015

Ryan Newton

FLOOD: Adaptive, Accelerated
Stream Processing

FLOOD project

• Distributed stream-processing compiler & RTS
• Basic plan:

‣ support JIT compilation and adaptation
‣ use EDSL compilers for accelerators & vectorization
‣ combine benefits of e.g. StreamIt & Twitter Storm

Monitoring
(profiling)

UbiProf

JIT compiling
dataflow
graphs
Accelerate

Stream RTS

CompactNF

Embedded Languages:
Lots of these — and growing

• Python — Copperhead, Continuum.io, Theano
• Haskell — Accelerate, Nikola, Paraiso, FeldSpar
• Scala — Delite/OptiML
• JavaScript — RiverTrail (Intel)
• LUA - Torch 7
• C++ — Intel ArBB (now defunct)
• Standalone — Harlan, Halide, StreamIt

Embedded Languages:
Lots of these — and growing

• Haskell — Accelerate

• Since 2009
• Originally: multi-dimm array language
• Partially formally verified

Type-safe Runtime Code Generation: Accelerate to LLVM

Trevor L. McDonell1 Manuel M. T. Chakravarty2 Vinod Grover3 Ryan R. Newton1

1Indiana University Bloomington

{mc

d

o

n

e

l

t

,

r

r

n

e

w

t

o

n

}@indiana.edu

2University of New South Wales

c

h

a

k

@

c

s

e

.

u

n

s

w

.

e

d

u

.

a

u

3NVIDIA Corporation

v

g

r

o

v

e

r

@

n

v

i

d

i

a

.

c

o

m

Abstract
Embedded languages are often compiled at application runtime;

thus, embedded compile-time errors become application runtime

errors. We argue that advanced type system features, such as

GADTs and type families, play a crucial role in minimising such

runtime errors. Specifically, a rigorous type discipline reduces run-

time errors due to bugs in both embedded language applications

and the implementation of the embedded language compiler itself.

In this paper, we focus on the safety guarantees achieved by

type preserving compilation. We discuss the compilation pipeline

of Accelerate, a high-performance array language targeting both

multicore CPUs and GPUs, where we are able to preserve types

from the source language down to a low-level register language in

SSA form. Specifically, we demonstrate the practicability of our

approach by creating a new type-safe interface to the industrial-

strength LLVM compiler infrastructure, which we used to build two

new Accelerate backends that show competitive runtimes on a set

of benchmarks across both CPUs and GPUs.

1. Introduction

Compiling a source language via a typed intermediate language

has compelling advantages over a conventional untyped compiler.

Carrying types can enable optimisations [32, 44], and it also helps

ensure compiler correctness. An optimising compiler for a high-

level language makes many passes over a single source program,

performing sophisticated and error-prone transformations—many

compiler bugs can be caught by type checking the intermediate

language after each transformation.

Several practical compilers today, including the Glasgow Haskell

Compiler (GHC), carry types through most or all of their compi-

lation pipeline. These types, however, are represented at the value

level inside the compiler. That is, the compiler’s abstract syntax

datatypes would include data constructors to distinguish, say, inte-

gers from floating-point numbers, such as:

data Type = Int | Float | · · ·

data Exp = Let (Var,Type,Exp) Exp | · · ·

This approach has several drawbacks: (1) as the program progresses

through the various compiler transformations, the value-level types

[Copyright notice will appear here once ’preprint’ option is removed.]

must be carefully manipulated to remain in sync with the terms they

annotate and (2) errors are only detected when the type checker or

verifier is run over the intermediate representation,1 which amounts

to testing the compiler for a given user program, not verifying that

the compiler preserves well-typedness in the intermediate language

on all possible inputs. Thus, bugs can lurk undetected [11, 47].

In Haskell, GADTs can be used to add a type level index to an

expression syntax tree—defining Exp t, rather than just Exp, to de-

note that evaluating the expression yields a value of type t, which

is checked during compilation. In fact, this is the canonical exam-

ple of how and why to use a GADT in Haskell. However, scaling

this technique up to a realistic language presents considerable chal-

lenges, and fully deploying the technique requires a full type-level

representation of the binding structure. Indeed, Accelerate [9, 31]

is the only example of a released compiler with users that employs

this technique, of which we are aware.

Unfortunately, a statically typed representation of terms is not

always enough. Code generation—the point where C, assembly,

or bytecode is emitted, often by appending strings together—is

another area where type-preservation is typically lost.

Of course, heavy-weight verification and proof-carrying-code

mechanisms can address these issues [24, 26], but they require a

vastly larger amount of effort. Moreover, these techniques have not

yet been scaled to high performance and parallelising compilers,

which are the target of our work.

On the other hand, a small number of popular compilers, such as

Clang/LLVM and GCC, are debugged by the sheer force of many

users. However, for young languages—such as Swift, Idris, Julia,

or Rust—this approach is simply not feasible, and embedded or

domain specific languages provide an especially extreme case of

many new compilers with small user bases. Our experience has

shown that most parallelisation-oriented DSLs developed over the

last several years are neither robust nor complete. We argue that

new compilers for embedded languages deserve more effort to

establish their correctness, even if for performance an unverified—

but widely-used—backend such as LLVM, C, or CUDA must be

part of the trusted code base.

C

a

n

y

o

u

t

r

u

s

t

y

o

u

r

c

o

m

p

i

l

e

r

?

GADT techniques are most read-

ily applicable to embedded languages because type-level informa-

tion is acquired “for free” from the host language type checker.

Yet, there remains the problem of maintaining this type-level infor-

mation throughout the entire compilation pipeline: from the source

program, through the optimisation stages, and finally to code gen-

eration. Our previous work dealt with the type-safe translation of

source programs from higher-order abstract syntax into a typed de

1In the case of GHC, this is only done while running GHC’s regression

test suite. CoreLint (GHC’s internal type checker) is switched off during

production use due to performance considerations.

—

D

R

A

F

T

—

D

R

A

F

T

—

D

R

A

F

T

—

D

R

A

F

T

—

1

2015/5/30

Accelerate hello world

dotp	 xs	 ys	 =	 fold	 (+)	 0	 (zipWith	 (*)	 xs	 ys)

Embedded
language arrays

dotp	 xs	 ys	 =	 fold	 (+)	 0	 (zipWith	 (*)	 xs	 ys)dotp	 xs	 ys	 =	 fold	 (+)	 0	 (zipWith	 (*)	 xs	 ys)

From Accelerate library

Switching to and from streams

In the following section, we describe the stream extension to
Accelerate’s program model, before we discuss its implementation
and performance.

3. Programming Model

3.1 Examples

Let us go back to our dotp example. If we know that the input
vectors most likely will not fit into memory, or we wish to ensure
it minimises its space usage, we want to tell the compiler to split
the input into chunks of appropriate size, calculate the product and
sum for each chunk, and add the subresults as they are produced.
Our stream extension makes this possible:

dotpSeq :: Acc (Vector Float)

→ Acc (Vector Float)

→ Acc (Scalar Float)

dotpSeq xs ys =

collect

$ foldSeqE (+) 0

$ zipWithSeqE (*) (toSeqE xs) (toSeqE ys)

Here, toSeqE turns a normal Vector into a sequence of Scalars,
zipWithSeqE performs element-wise multiplication of the two in-
put sequences, foldSeqE calculates the sum, and collect takes
the conclusion of the sequence computation and turns it into an
Acc expression.

As Accelerate is rank-polymorphic, sequence operations can
be parametrised by shape information. By convention, we denote
specialised versions of these operations for sequences of scalars by
the suffix E, as for example toSeqE above.

It is not just sequences of scalars that are supported, however.
Our extension supports sequences of arbitrary rank. If for example
we wanted to perform a matrix vector multiplication:

mvmSeq :: Acc (Matrix Float)

→ Acc (Vector Float)

→ Acc (Vector Float)

mvmSeq mat vec

= let rows = toSeq (Z:.Split:.All) mat

in collect

$ fromSeqE

$ mapSeq (dotp vec) rows

In this case, we first split the vector up into rows with toSeq,
then apply dotp vec over every row, turn what is now a sequence
of scalars into a Vector with fromSeqE, before finally collecting
the result.

In addition to not requiring the entire matrix be made manifest,
this example also highlights how our extension enables an extra
degree of nesting, in this case, defining matrix-vector multiplica-
tion in terms of the parallel dot-product, something not previously
possible.

3.2 Streams

As we have seen in the previous examples, an Accelerate array is
a collection where are all elements are simultaneously available,
whereas a sequence value corresponds to a loop, where each itera-
tion computes an element of the sequence. Sequences are ordered
temporally, and are traversed from first to last element. Once an el-
ement has been computed, all previous elements are out of scope,
and may not be accessed again. The arrays of a sequence are re-
stricted to having the same rank, but not necessarily the same shape.
If the shapes happen to be the same, we call the sequence regular.
Using A to range over array values, and square brackets to denote

sequences,

[A1, A2, ..., An]

denotes the sequence that computes A1 first, computes A2 second
and so forth until the final array An is computed. Here, n is the
length of the sequence (possibly zero).

Sequences model the missing high-level connection between
the parallel notation of array languages and sequential notation of
traditional for-loops. The basic sequence combinators are carefully
selected such that the arrays of a sequence can be evaluated entirely
sequentially, entirely parallel, or anything in between as long as
the strategy respects the sequence order of arrays; even on SIMD
hardware. The runtime system then selects a strategy that fits the
parallel capabilities of the target hardware. The programmer may
assume full parallel execution with respect to what the hardware
can handle, while maintaining a limit on memory usage. A purely
sequential CPU would evaluate one array at a time with a minimal
amount of working memory. A GPU would evaluate perhaps the
first 100 arrays in one go, and then evaluate the next 100 arrays, and
so on. The working memory would be larger, but not as large as the
cost of manifesting the entire sequence at once. Ideally, the runtime
performance, in terms of execution time, should correspond to
a fully parallel specification, and in terms of working memory,
should be in the order of a constant factor related to the parallel
capabilities of the hardware - Unless any one array of the sequence
exceeds this amount.

Of course, not all array algorithms can be expressed as se-
quences. As sequences can only be accessed linearly, any algorithm
which relies on permuting or reducing an array in a non-linear way,
cannot be expressed as a sequence. It is the responsibility of the
programmer, not the compiler, to expose inherent sequentialism.

3.3 From arrays to sequences and back

As we discussed previously, the type constructors Exp and Acc rep-
resent nodes in the AST from which Accelerate generates CUDA
C code and CUDA GPU kernels, respectively. Sequence operations
are represented by the type constructor Seq. Accelerate will gener-
ate CUDA kernels together with a schedule for executing the ker-
nels over and over until completion.

Sequences are introduced in Accelerate either by slicing an
existing array, as we did in our examples, or by streaming an
ordinary Haskell list into Accelerate, which we will discuss in
detail in Section 3.4.

In our examples, we used the combinator toSeqE to convert one
dimensional array into a sequence of values of the same element
type:

toSeqE :: (Elt a)

⇒ Acc (Vector a)

→ Seq [Scalar a]

However, toSeqE is just a special case of the more general com-
binator toSeq, which operates on multi-dimensional arrays and is
parametrised with a specific slicing strategy div:

toSeq :: (Division div, Elt a)

⇒ div

→ Acc (Array (FullShape div) a)

→ Seq [Array (SliceShape div) a]

toSeqE :: (Elt a)

⇒ Acc (Vector a)

→ Seq [Scalar a]

While the type constructor Seq represents sequence AST nodes, we
use the Haskell list syntax to represent the actual sequence type. As

* (Streaming Accelerate - with collaborators at UNSW in Sydney)

Current Architecture

One Machine

Embedded Lang
JIT compiler

Control/comm
(GHC RTS) Control layer

Control layer

Compute resources (HW)

Network
Communication

Eventual Architecture

One Machine

Embedded Lang
JIT compiler

Control layer
GHC RTS Control layer

Control layer

Compute resources (HW)

Network
Communication

Current Architecture

One Machine

Embedded Lang
JIT compiler

Control/comm
(GHC RTS) Control layer

Control layer

Compute resources (HW)

Network
Communication

UbiProf

Accelerate

CompactNF &
Haskell HPX

Ongoing work on adaptation
• Multi-device - cpus/gpus
• Auto-tune  

‣ Params 

‣ Rewrite rules 

‣ Device-specific 
backend opts

Currently Implemented
fold f e æ ñ let px, yq “ split-1 æ in

zipWith f pfold f e xq pfold f e yq
map f æ ñ let px, yq “ spliti æ in

concati pmap f x,map f yq
generate � f ñ concati pgenerate �r�i :“ t�i{2us f,

generate �r�i :“ r�i{2ss
p�x0...xn. fx0...txi ` �i{2u...xnqq

replicate � æ ñ let px, yq “ spliti æ in

concat

newIndexp�, iq p
replicate � x,

replicate � yq
zipWith f æ1 æ2 ñ let px1, y1q “ spliti æ1 in

let px2, y2q “ spliti æ2 in

concati pzipWith f x1 x2, zipWith f y1 y2q
backpermute � f æ ñ concati

pbackpermute �r�i :“ t�i{2us f æ,

backpermute �r�i :“ r�i{2ss
p�x0...xn. fx0...rxi ` �i{2s...xnq æq

use rc0 . . . cns� ñ concat0 puse rc0 . . . ctn{2us�r�0“r�0{2ssq
puse rcrn{2s . . . cns�r�0“t�0{2usq

Additional Legal Rules
fold f e æ ñ let px, yq “ split0 æ in

concat0 pfold f e x, fold f e yq

Figure 2. Fission rewrite rules. One rule application fissions one
data-parallel combinator.

Fissioning programs provides a way to convert latent paral-
lelism, inside data-parallel operators, into explicit task parallelism.
This in turn provides enough tasks to fully utilize multiple GPUs.
We implement fissioning through a non-deterministic rewriting
system as described in Section 3.1. We further validate the correct-
ness of these rules by implementing a semantic model of Accelerate
and the fissioning system in PLT Redex (Section 3.2).

3.1 The Rewrite System
Figure 2 defines a term-rewriting system that exposes a large search
space of valid program transformations. An Accelerate optimizer
can navigate this space in arbitrary ways, and be assured that
the resulting program will run on any combination of Accelerate-
supported devices. In the special case of a multi-device fission opti-
mizer, the end goal is to end up with sufficient, balanced task paral-
lelism for the hardware. Our implementation currently supports fis-
sioning fold,map, and generate, and other operators are supported
via transformation to generate-like deferred arrays (Section 4).

The rules in Figure 2 make frequent use of splitting and con-
catenation operations, as well as manipulating the shapes of ar-
rays. Split divides an array into two halves along a given di-
mension, indicated by a subscript on the split operator. If a has
shape r�0 �1 �2 �3s—from “outermost” (left) to “innermost”
(right)—then split1 a produces a tuple of arrays pb, cq, with
xby “ r�0 t�1

2 u �2 �3s and xcy “ r�0 r�1
2 s �2 �3s, where xby

and xcy denote the shape of b and c. We use split´1 as a shorthand
for splitting on the innermost dimension of an array.

Similarly, concatenation combines two arrays along a certain
dimension. A key observation is that concatenation is the inverse
of splitting:

spliti a “ pb, cq ùñ concati pb, cq “ a

These definitions allow zero-sized arrays, e.g. split0 rvs “ prs, rvsq

and split0 rs “ prs, rsq. Neither of these operations are primitive
in the original Accelerate, but they are straightforward to add as
library functions. Our Redex model treats these as primitives for
simplicity.

In our formal notation we shall treat shapes as arrays, so if
a “

“
10 20 30
40 50 60

‰
, then xay0 “ r3 2s0 “ 3. The rank of an array is

the number of dimensions (i.e. xxayy0). For a shape �, we use the
notation �r�i :“ ns to define a new shape with the ith dimension
in � replaced by n. For example, given � “ r1 2 3s, �r�1 :“ 4s

would be r1 4 3s. Note that in the Accelerate source language, rank
is static and encoded in the type system, and that most of Accel-
erate’s core primitives are rank-polymorphic, which is in keeping
with traditions established by many dynamically typed array lan-
guages such as APL and Matlab.

The general strategy for most rules is to split the input arrays
in half, apply the operation to both halves and then combine the
results into a single array. As an example, consider the expression
fold p`q 0 a. The second fold rule splits along the outermost
dimension, meaning the rule would split a into x “ r1 2 3s and
y “ r4 5 6s. Folding the two halves yields r6s and r15s, and then
concatenating these yields the correct result of

“
6
15

‰
. On the other

hand, the first version of the fold rule splits along the innermost
dimension, splitting a into

“
1
4

‰
and

“
2 3
5 6

‰
. The two sub-folds would

produce
“
1
4

‰
and

“
5
11

‰
, so these two arrays must be combined using

a zipWith instead of a simple concatenation.
Cases such as replicate require more care because replicate

increases the rank of its input. Let us consider the expression
replicate r2 ˝s b with b “ r1 2s, which makes two copies of b along
the outermost (in this case vertical) dimension. This expression
evaluates to

“
1 2
1 2

‰
Let us consider a potential naive fission rule for

replicate, which simply splits the array along a dimension and then
concatenates the replicated result along the same dimension. In this
case, splitting b along dimension 0 gives r1s and r2s. Replicating
these halves yields

“
1
1

‰
and

“
2
2

‰
. If we then concatenate along

dimension 0, we would get:
»

—–

1
1
2
2

fi

�fl

Instead, we need to concatenate along dimension 1, since the
replicate command inserted a new outermost dimension. The
newIndexp�, iq clause in the replicate rule in Figure 2 accounts
for the shifting of dimension identifiers due to replication. See Fig-
ure 5 for a formal definition of newIndex.

3.2 Testing with PLT Redex
As we have just seen, there are some subtleties to the fissioning
rules, especially in the presence of changing ranks. To increase our
confidence in the fissioning rules, we developed a model in PLT
Redex [16]. The model serves both as a semantics for the Acceler-
ate language as well as a way to explore the fissioning rules. While
the PLT Redex model is not a full proof of correctness, it has vali-
dated correct behavior in a test suite of 28 tests, exploring all pos-
sible fissioning and evaluation choices for these programs. These
rules were tested on arrays of up to three dimensions, and is suffi-
cient to exercise all of the rewrite rules. Our model is available at
https://github.com/iu-parfunc/accelerate-redex. Here
we will discuss the salient aspects of our model.

We start by defining a language and reduction relation for Ac-
celerate programs defined by the grammar in Figure 1 and then we
create a reduction relation to define the semantics of the Accelerate
language. Our semantic model makes a strict separation between
the array-level language and the scalar language. The overall struc-
ture of the program is determined by high-level array operations
(e.g. map, fold), while the scalar language describes operations on
individual elements of an array which are driven by the array op-
erators. The array-level and scalar-level languages have different
environments, so scalar functions cannot access array variables di-

4 2015/5/30

Figure 1. Heat maps showing the fitness landscape for each search space

Figure 2. Left: Two dimensional heat map of Mandelbrot search space. Right: Two dimensional heat map of histogram search space

6 2015/6/1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

50K 60K 70K 80K 90K 100K 110K

M
ed

ia
n

tim
e

in
 s

ec
on

ds

Number of bodies

N-Body Benchmark

Accelerate CUDA
MULTI 1 GPU Fission=On
MULTI 1 GPU Fission=Off

MULTI 2 GPUs Fission=On
MULTI 2 GPUs Fission=Off

Matrix Multiplication The matrix multiplication benchmark
achieves a modest speedup at large matrix sizes. This benchmark
requires a large partial result to be communicated between devices
and combined, which we observe is only worthwhile at larger in-
put sizes. Additionally, this program exercises the fold fissioning
rules, so the combination step is more expensive relative to the
other benchmarks we consider, such as N -body, which only need
to concatenate their partial result vectors.

Mandelbrot The Mandelbrot set is generated by sampling values
c in the complex plane, and determining whether under iteration
of the complex quadratic polynomial zn`1 “ z2n ` c that |zn|

remains bounded however large n gets. This is an example of an
unbalanced workload, as the time to compute each point c on the
complex plane varies. Figure 6 shows a visual representation of the
result, and indicates how our fission rules distributed the iteration
space between the two devices. Areas that are colored black take
the longest time to compute. Thus, we can see that the second piece
(right half) is considerably more expensive to compute compared to
the first. We discuss possible approaches to resolving this problem
in Section 8.

7. Related Work
There have been several efforts to build languages or tools for more
effectively leveraging multiple GPUs. Many projects either rely on
a programmer to specify some or all of the details of how their
program is distributed across devices, or only distribute sections of
their input vector or array to identical programs on multiple GPUs.

SkelCL [38] is an extension to OpenCL that allows program-
mers to specify at a high level the general strategy to use when dis-
tributing a computation across multiple devices. It abstracts away
lower level concerns like the details of copying data.

Delite/LMS [35] is a library-based parallelisation framework
for DSLs in Scala that allows specifying complex optimisations in
a modular manner. The Delite code generator is able to target mul-
ticore CPUs and GPUs, and demonstrates impressive performance
on both.

Wu et al. [41] describe kernel fusion and fission operations, to
be used in optimisation of data warehousing applications. Their
intent is to schedule smaller data-parallel kernels to hide PCIe
transfer time.

SkePu [15] is a C++ template library for single and multi-
GPU systems based on code skeletons, for operations such as map

9 2015/5/30

CompactNF

• (See ICFP’15) 

• Puts data in a managed heap region
• GHC uses a block structured heap

• Send via RDMA
‣ relocatable if necessary 

• (similar to region based me mgmt)

any checking) when attempting to send a pointer to an object in the
region.

However, such an operation is only safe if the region, in fact,
contains all of the reachable objects from a pointer. If this has been
guaranteed (e.g., because a copy operates transitively on reachable
objects), there is yet another hazard: if mutation is permitted on
objects in the compact region, then a pointer could be mutated to
point out of the region.

In fact, an analogous hazard presents itself with garbage col-
lection: if a compact region has outbound regions, it is necessary
to trace it in order to determine if it is keeping any other objects
alive. However, if there are no outgoing pointers and the data is im-
mutable, then it is impossible for a compact region to keep objects
outside of it alive, and it is not necessary to trace its contents. To
summarize:

PRINCIPLE 3. Immutable data with no-outgoing pointers is highly
desirable, from both a network transmission and a garbage collec-
tion standpoint.

3. Compact Normal Form
Our goal with CNFs is to organize heap objects into regions, which
can then be transmitted over the network or treated uniformly
during garbage collection. Concretely, we do this by representing
a pointer to an object in a compact region with the abstract type
Compact a. Given a Compact a, a pointer to the actual object can
be extracted using getCompact:

newtype Compact a
getCompact :: Compact a ! a

How do we create a Compact a? Any such operation would
need to take a value, fully evaluate it, and copy the result into a
contiguous region. We represent the types which can be evaluated
and copied in this way using a type class Compactable, similar to an
existing Haskell type class NFData which indicates that a type can
be evaluated to normal form; however, Compactable expresses the
added capability to send some data over the network. Most common
types are compactable, e.g. Bool or Maybe a (if a is Compactable),
but mutable types such as IORef a are not.

class NFData a) Compactable a

We might then try to define a function with this type:

newCompact :: Compactable a) a ! IO (Compact a)

This function creates a new region and copies the fully evaluated a

into it. Suppose, however, that we want to apply a functional update
to this tree: with only newCompact, there would be no way to reuse
data already living in a compact region for the new compact. Thus,
newCompact should be decomposed into two functions:

mkCompact :: IO (Compact ())
appendCompact :: Compactable a

) a ! Compact b ! IO (Compact a)

appendCompact, like newCompact, fully evaluates a; however, it
copies the result into the same compact region as Compact b. Ad-
ditionally, it short-circuits the evaluation/copying process if a sub-
graph is already in the target compact region. (The actual heap ob-
ject Compact b points to is otherwise ignored.) mkCompact then sim-
ply creates a new region and returns a dummy pointer Compact ()

to the region, for use in appendCompact.
While one could quibble with the particular interface provided,

the above interface is sufficient for all compactions—but we still
need support for sending Compact a values over the network, e.g.:

sendCompact :: Socket ! Compact a ! IO ()

as in this example:

do c newCompact (buildTree x)
sendCompact sock c

(Un)observable sharing Interestingly, you cannot observe shar-
ing of Haskell values with just mkCompact and appendCompact. In
particular, we could implement observably equivalent pure versions
of these functions in the following way (where deepseq is a method
in NFData which evaluates its first argument to normal form when
the second argument is forced):

newtype Compact a = Compact a
mkCompact = Compact ()
appendCompact x _ = deepseq x (Compact x)

Of course, the (useful) function which tests if an arbitrary value
lives in a compact region does permit observing the presence of
sharing:

isCompact :: a ! IO (Maybe (Compact a))

3.1 Region invariants
The Compactable type class enforces some important safety invari-
ants on data which lives in a compact region:

• No outgoing pointers. Objects are copied completely into the
compact region, so there are never any outgoing pointers. This
is useful when transmitting a region over the network, as we
know that if we send an entire region, it is self-contained. We
will also rely on this invariant in garbage collection (described
in more detail in Section 4): this invariant means it is not
necessary to trace the inside of a region to determine liveness
of other objects on the heap. Compacted objects are essentially
a single array-of-bits heap object.

• Immutability. No mutable objects are permitted to be put in a
compact region. This helps enforce the invariant of no outgoing
pointers, and also means that data in a region can be copied with
impunity.

• No thunks. Thunks are evaluated prior to being copied into a
region; this means the CNF will not change layout, be mutated,
or expand as a result of accessing its contents, and that we do
not attempt to send closures over the network.

Haskell has especially good support for immutable data, which
makes these restrictions reasonable for compact regions. While
many languages now host libraries of purely functional, persistent
data structures, in Haskell these are used heavily in virtually every
program, and we can reasonably expect most structures will be
Compactable.

3.2 Sharing
Because every compact region represents a contiguous region of
objects, any given object can only belong to at most one compact
region. This constraint has implications on the sharing behavior of
this interface. Here are two examples which highlight this situation:

Sharing already compact subgraphs Consider this program:

do c mkCompact
r1 appendCompact [3,2,1] c
r2 appendCompact (4:getCompact r1) c
-- Are ’tail r2’ and r1 shared?

In the second appendCompact, we are adding the list [4,3,2,1].
However, the sublist [3,2,1] is already in the same compact re-
gion: thus, it can be shared.

However, suppose r1 is in a different compact, as here:

3 2015/5/30

Efficient Communication and Collectionwith Compact Normal Forms
Edward Z. Yang1 Giovanni Campagna1 Ömer Ağacan2 Ahmed El-Hassany2Abhishek Kulkarni2 Ryan Newton2

Stanford University1, Indiana University2{
e

z

y

a

n

g

,

g

c

a

m

p

a

g

n}
@

c

s

.

s

t

a

n

f

o

r

d

.

e

d

u {
o

a

g

a

c

a

n

,

a

h

a

s

s

a

n

y

,

a

d

k

u

l

k

a

r

,

r

r

n

e

w

t

o

n}
@

i

n

d

i

a

n

a

.

e

d

u

Abstract
In distributed applications, the transmission of non-contiguous data
structures is greatly slowed down by the need to serialize them into
a buffer before sending. We describe Compact Normal Forms, an
API that allows programmers to explicitly place immutable heap
objects into regions, which can both be accessed like ordinary data
as well as efficiently transmitted over the network. The process of
placing objects into compact regions (essentially a copy) is faster
than any serializer and can be amortized over a series of functional
updates to the data structure in question. We implement this scheme
in the Glasgow Haskell Compiler and show that even with the
space expansion attendant with memory-oriented data structure
representations, we achieve between ⇥2 and ⇥4 speedups on fast
local networks with sufficiently large data structures.
C

a

t

e

g

o

r

i

e

s

a

n

d

S

u

b

j

e

c

t

D

e

s

c

r

i

p

t

o

r

s D.3.2 [Concurrent, Dis-
tributed, and Parallel Languages]
G

e

n

e

r

a

l

T

e

r

m

s Languages, Performance
1. Introduction
In networked and distributed applications it is important to quickly
transmit data structures from one node to another. However, this
desire is often in tension with the usual properties of high-level
languages:

• Memory-safe languages such as Haskell or Java support rich, ir-
regular data structures occupying any number of non-contiguous
heap locations.

• Network interface cards (NICs) perform best when the data to
be sent resides in a single contiguous memory region, ideally
pinned to physical memory for direct memory access (DMA).Thus, while efficiently sending byte arrays does not pose a prob-

lem for high-level languages, more complex data structures require
a serialization step which translates the structure into a contiguous
buffer that is then sent over the network. This serialization process

[Copyright notice will appear here once ’preprint’ option is removed.]

is a source of overhead and can be the limiting factor when an ap-
plication runs over a fast network.In response to this problem, there have been several attempts
to engineer runtime support enabling high-level languages to send
heap representations directly over the network: e.g. in Java [8], or
even in distributed Haskell implementations [18]. However, these
approaches rarely manage to achieve zero-copy data transmission,
and complications abound with mutable and higher order data.

In this paper, we propose a new point in the design space: we
argue it’s worth adopting the same network representation as the
native in-memory representation, despite the cost in portability and
message size. We show that even when message size increases
by a factor of four, on a fast local network—like those found in
distributed computation settings—end-to-end performance can still
be improved by a factor of two.The benefit of all this is that the problem of fast network trans-
fer reduces to the problem of arranging for heap data to live in
contiguous regions. While region type systems [2, 11, 28] could ad-
dress this problem, we implement a simpler solution which requires
no changes to the type system of Haskell: let programmers explic-
itly place immutable data into compact regions or compact normal
form (CNF). Objects in these regions are laid out in the same way
as ordinary objects, they can be accessed in the same way from or-
dinary Haskell code and updated in the standard manner of purely
functional data structures (the new nodes appended to the compact
region). Furthermore, as this data in question is immutable and has
no outgoing pointers, we side step the normal memory management
problems associated with subdividing the heap (as in generational
and distributed collectors). Finally, given any heap object we can
quickly test for membership in a compact region, from which we
can also deduce whether it is fully evaluated, a question which is
often asked in a lazy language like Haskell.Adding CNF to Haskell also solves two other, seemingly unre-
lated problems:

• Permanent data residency. In long-running programs, there may
be some large data structures which never become garbage.
With a standard generational garbage collector, these data struc-
tures must still be fully traversed upon a major GC, adding ma-
jor overhead. In these cases, it is useful to promote such data to
an immortal generation which is never traced.• Repeated deepseq. Even setting aside serialization, there are
other reasons to fully evaluate data, even in a lazy language.
For example, in a parallel computation settings, it is important
to ensure that computational work is not accidentally offloaded
onto the wrong thread by transmission of a thunk.This hyperstrict programming in Haskell is done with the
NFData type class, which permits a function to deeply evalu-

1

2015/5/30

UbiProf
• Cheaper dynamic probes (v.s. DTrace)

‣ Uses Intel’s __notify_intrinsic

• For streaming: create a labeled graph
‣ Edges: data volume
‣ Vertices: compute latency

• (See poster)

Introduc)on*
Distributed stream processing requires a combination
of technologies to monitor workloads and map them
onto the local resources of worker machines. Here
we highlight three sub-projects that address distinct
aspects of this problem:

•  Compile: JIT compiling dataflow graphs for

available parallel architectures (Accelerate)

•  Communicate: Sending irregular data efficiently
between nodes (Compact Normal Form)

•  Monitor: Profiling native-code programs based on
binary self-modification and cross-modification
(Ubiprof)

Acknowledgments*

This work is supported by NSF XPS award #1337242,
“XPS: DSD: Adaptive Stream-Processing Compilers for a Messy World”

Accelerate*
In a distributed execution plan, a subgraph of a
stream dataflow graph must map onto the hardware
of a worker node and achieve throughput. Our
approach is a DSL JIT compiler called Accelerate.

•  Accelerate [6] takes a graph of data-

transformations and generates CUDA or LLVM
code to run on CPU or GPU.

•  Accelerate can launch concurrent GPU kernels on
each new input (stream element) that arrives

•  Accelerate is a (partially) formally verified
compiler [4]

Currently, we apply Accelerate to streaming problems
in the video domain:

Via it’s LLVM backend, Accelerate can run data-
processing algorithms on the CPU too

Ongoing work is improving Accelerate’s streaming
[7]. At IU, we are adding the ability to dynamically
handle multiple devices, such as two GPUs [2], and
add auto-tuning to the high-level compiler [3].

Ryan*Newton,*Joel*Svensson,*Trevor*McDonell,**
Michael*Vollmer,*Ömer*Sinan*Ağacan,*Buddhika*Chamith*

{rrnewton,*joelsven,*mcdonelt,*vollmerm,*oagacan,*budkahaw}@indiana.edu!

Paper*links*for*phones*
[1] Efficient Communication and Collection

with Compact Normal Forms. ICFP’15
tinyurl.com/compactnf

[2] Converting Data-Parallelism to Task-
Parallelism by Rewrites, in submission.
tinyurl.com/acc-multidev

[3] Meta-Programming and Auto-Tuning in the
Search for High Perf. GPU Code, in sub.
tinyurl.com/autotune-gpu

[4] Type-safe Runtime Code Generation:

Accelerate to LLVM, in submission.
tinyurl.com/acc-llvm

[5] Ubiprof: Towards Always-On Profiling of
Native code, working draft.
tinyurl.com/ubiprof

[6] Optimising Purely Functional GPU

Programs, tinyurl.com/acc-optim
[7] Functional Array Streams, Madsen et al.

FHPC 2015, tinyurl.com/acc-streaming

Further*informa)on*

PI Website: www.cs.indiana.edu/~rrnewton
Github: github.com/iu-parfunc
 github.com/rrnewton
CREST: crest.iu.edu
PL@IU: lambda.soic.indiana.edu

UbiProf
Profiling streaming dataflow graphs for scheduling
purposes has different requirements than traditional
time profiling.

Capturing processing latency and data size requires
sampling intervals rather than instants, and injecting
custom code to compute data structure sizes. Thus
dynamic probes, such as in DTrace, are appropriate.

 Yet overheads for these probes are high. Thus we
are exploring new approaches with an order of
magnitude improvement in probe cost, and a probing
infrastructure that is:

•  Intra-process, user space
•  Multicore scalable
•  Free when not engaged

We have also used these probes to build a general
profiling tool, UbiProf [5]. UbiProf dynamically
activates and deactivates probes to stay under a given
allowable overhed, using a backoff approach for hot
functions to disable their own probes.

 UbiProf controls a backoff threshold and the
frequency with which deactivated probes are
reactivated (sampling epoch).

Here, even on a workload with 9531 different
functions and 18M calls/sec (Perl spec benchmark),
it is possible to take up to 1000 samples per function
per 100ms sampling epoch, for less than 2%
overhead.

 One consequence of capturing function start/end
intervals is that UbiProf can flag functions with
multimodal cost, which gprof cannot.

gzip grep bzip h264
accurate 37 26 32 41
within 10% 52 39 43 60
within 50% 87 70 59 83
within 100% 88 77 63 91
Exceeding 100% 12 23 34 9

Figure 11. What percentage of UbiProf’s reported per-
function min durations were accurate with respect to
groundtruth.

relative benefits of each and measure how well each tool can
(indirectly) approximate the other.

5.3.1 UbiProf accuracy vs groundtruth
For each function f with m dynamic invocations over the
process lifetime, f0 . . . fm, we define groundtruth for each
f
i

as a leaf measurement of f
i

. In fact, to account for nonde-
terminism in process execution we want J measurements of
each f

i

, thus f j

i

. To acquire groundtruth data we run UbiProf
in a special mode where it instruments only one function,
guaranteeing that function will receive leaf samples7 We re-
peat this process J times to get all samples. Thus the we say
that the minumum time for function f is somewhere in the
range [Min

j

(Min
i

(f j

i

)), Max
j

(Min
i

(f j

i

))], that is, some-
where in the range of observed minimum times on each of J
trials.

In this analysis, we ask “how accurate is UbiProf’s re-
ported minimum execution time for f?”. Specifically, we
check if it falls into the range of minimums observed over
the J groundtruth trials, or, if it is outside of that range, we
measure the percentage error in reported duration.

Note that if the true minimum cost execution was f
min

,
then UbiProf’s reported minimum can be inaccurate for two
reasons, either (1) the f

min

invocation was sampled, but
was a non-leaf sample and thus was perturbed by the noise
described in Section 4.1, or (2) f ’s probe backed off and
the f

min

invocation was never sampled (resulting in some
other f

oth

where oth 6= min reported as minimum instead).
Table 11

5.3.2 UbiProf vs GProf
Cold functions missed by sampling GProf can estimate
average duration of a function based on how frequently it
appears in samples plus the total process cputime. However,
for functions that are short and not extremely hot, they could
be undersampled or even not sampled at all, leading us to
conclude the have “zero duration”. In fact, a function can
have duration, p � ✏, approaching the sampling period, and
still be reported as zero cost! By default, gprof on Linux
uses a sampling period of 0.01 seconds. This means a func-
tion could be up to 30 million cycles and reported as free

7 Unless it is a recursive function. We perform this analysis only for non-
recursive functions currently, but recursive functions could be handled, if
desired, by sampling only at a given stack depth on each run.

gzip grep bzip perl h264
severe MM 1 3 6 67 42
called funs 36 66 60 415 317
gprof missed 0 0 0 42 42

Figure 12. Counts of how many functions in each applica-
tion were a bad fit for gprof due to multi-modal (MM) ex-
ecution time, or were missed by gprof entirely, but sampled
by UbiProf.

(but not with high probability). Figure 12 shows many func-
tions were missed by gprof entirely, or were more than 10%
off in average duration. Likewise, it counts how many func-
tions were multi-modal (based on the UbiProf-reported his-
togram), making average duration a bad metric.

6. Related Work & Alternative Approaches
Profiling as an end can be accomplished by various means.
Here we overview some of the alternatives. For a profiling
capability that can be conditionally activated at runtime, we
either need (1) multiple versions of the compiled code and
the ability to redirect function call sites (for example as when
a language VM decides to recompile a function at a different
optimize level), or (2) a single version of the code with latent
probes, such as the approach we presented in the UbiProf
system.

Runtime branches The simplest way to achieve toggleable
latent probes is to generate conditionals: “if(flag) probe();”.
Indeed, any of the above instrumentation or compiler tech-
niques could add these conditional probes. Further, the cost
of a correctly predicted branch on modern architectures is
low. However, if we wish to annotate the program at a fine
grain (e.g., every function or basic block), these overheads
can still be prohibitive. Even when all probes are deactivated,
we incur an additional memory load for each probe-specific
flag, as well as a bloated instruction stream. It is for that
reason that we have based UbiProf on dynamic binary mod-
ification, rather than simply on conditionally executed code
paths.

6.1 Patching with interrupt instructions
Patching-based tools have different means to interrupt exe-
cution at that point. In this paper, we have presented an ap-
proach based on inserting JMP instructions, but this is not
typical. On x86, the interrupt instruction (INT 3) is typically
used for this purpose—it requires only a single byte (0xCC),
thus displacing only a single original instruction. Indeed, this
is also the technique used by debuggers, and the infrastruc-
ture for cross process snooping via interrupts and the ptrace

system call is quite mature. Further, while software inter-
rupts are usually used (with ptrace) to instrument a differ-
ent process, they can also be used for self-instrumentation,
which is most appropriate for always-on profiling.

There are two major disadvantages, however, of interrupt
instructions:

10

Processing
step

Processing
step

measure latency

measure frequency,
size in bytes

Backoff  
thresh:

Compact*Normal*Form*(CNF)*
Distributed stream processing systems (like Twitter
Storm) must route streams over network links. Data
(de)serialization consumes significant time,
especially for irregular and pointer-based data
structures.

 For immutable data in high-level languages, we
explore an alternate heap representation: Compact
Normal Form [1]. CNF allows regions of the heap to
directly be:

•  sent over the network (including RDMA)
•  stored to disk
•  skipped over by GC as one object

We have implemented CNF for the Glasgow Haskell
Compiler (GHC). Our total speedup for sending,
e.g., large binary trees through the network with CNF
can exceed 16X:

Likewise, reading twitter data from disk is faster
when it can be mmap’d directly into GHC’s heap,
whether reading one record or all of them:

Finally, if inserting frequently into a large data
structure, it being compact can actually help
performance:

We are combining CNF with the HPX runtime
(hpx.crest.iu.edu) for distributed execution.

1/2

1

2

4

8

16

32

20 25 210 215 220

Number of leaves

Fa
ct

or
 s

lo
w

 d
ow

n
re

la
tiv

e
to

 C
N

F

Java
Cereal
Binary
Compact/Share

Figure 3: Relative improvement for serializing a bintree of size
2N with CNFs versus other methods. Both x and y scales are
logarithmic; bigger is better for CNF (and worse for the serializer
being compared.) Compact/Share refers to the implementation of
compact regions which preserves internal sharing.

• bintree is a binary tree with a single unboxed integer in leaves.
This variant has high pointer/total size ratio, and thus represents
a worst case scenario for transmitting compact normal forms.

• pointtree is a binary tree with four unboxed integers in leaves,
increasing the data density.

Additionally, we also analyzed a third data type, composed of
URLs, hashtags and user IDs for all posts in Twitter in the month
of November 2012 [21, 22].

Our experiments were done on a 16-node Dell PowerEdge
R720 cluster. Each node is equipped with two 2.6GHz Intel Xeon
E5-2670 processors with 8-cores each (16 cores in total), and
32GB memory each. For the network benchmarks over sockets,
we used the 10G Ethernet network connected to a Dell PowerCon-
nect 8024F switch. Nodes run Ubuntu Linux 12.04.5 with kernel
version 3.2.0.

5.1 Serialization and deserialization costs
Our first evaluation compares the cost of serializing and deserial-
izing data into a region, as well as the resulting space usage of the
serialized versions. Note that in the case of CNFs, deserialization
takes zero time, since data in a CNF can be used directly.

In Figure 3, we see a plot comparing serialization times for bi-
nary trees which store an integer at each node. We can see that at
low tree sizes, constant factors dominate the creation of compact
normal forms; however, at larger sizes copying is an order of mag-
nitude faster than serializing. The line for Compact/Share, which
refers to the implementation of compact which uses a hash table
to preserve internal sharing, demonstrates the overhead of using a
hash table to preserve out-of-line sharing. The graph for pointtree
was comparable, and for Twitter the serialization overhead was
consistently ⇥11 for binary and between ⇥9 and ⇥18 for Java.

5.2 Memory overhead
In Table 1, we report the sizes of the various serialized representa-
tions of large versions of our data types; these ratios are represen-
tative of the asymptotic difference.

We see that in the worst case, the native in-memory represen-
tation can represent a ⇥4 space blow-up. This is because a seri-

Size Compact Binary Java
223 leaves 0.322 s 6.929 s 12.72 s
220 leaves 38.18 ms 0.837 s 1.222 s
217 leaves 4.460 ms 104.1 ms 109 ms

Table 1: Median latency for serialization with CNFs versus serial-
ization with Haskell binary and Java, for the bintree data structure.

Method Type Value Size MBytes Ratio
Compact bintree 223 leaves 320 1.00
Binary 80 0.25
Cereal 80 0.25
Java 160 0.50

Compact pointtree 223 leaves 512.01 1.00
Binary 272 0.53
Cereal 272 0.53
Java 400 0.78

Compact twitter 1024MB 3527.97 1.00
Binary 897.25 0.25
Cereal 897.25 0.25
Java 978.15 0.28

Table 2: Serialized sizes of the selected datatypes using different
methods.

1/2

1

2

4

8

16

20 25 210 215 220

Number of leaves

Fa
ct

or
 s

lo
w

 d
ow

n
re

la
tiv

e
to

 C
N

F

bintree (Binary)
bintree (Java)
pointtree (Binary)
pointtree (Java)

Figure 4: Relative improvement for median end-to-end latency for
socket communication with CNFs versus serialization by Haskell
binary and Java, for two different data structures bintree and point-
tree. Both x and y scales are logarithmic; bigger is better for CNF
(and worse for the serializer being compared.) At small sizes, con-
stant factors of CNFs dominate.

alization usually elides pointers by inlining data into the stream;
furthermore tags for values are encoded in bytes rather than words.
However, as the raw data increases, our ratios do get better. Inter-
estingly, the Twitter data achieves a relatively poor ratio: this is in
part because most of the strings in this data are quite small.

The difference in memory size sets the stage for the next set of
experiments on network transfer latency.

7 2015/5/30

Type Size Compact Binary Java
bintree 223 leaves 3.180 s 18.18 s 9.595 s

220 leaves 382.4 ms 1.028 s 837 ms
217 leaves 59.93 ms 109.1 ms 90 ms

pointtree 223 leaves 4.978 s 136.1 s 15.71 s
220 leaves 624.0 ms 4.181 s 1.461 s
217 leaves 81.31 ms 354.0 ms 141 ms

Table 3: Median end-to-end latency for socket communication with
CNFs versus serialization by Haskell binary and Java, for the dif-
ferent data structures bintree and pointtree.

5.3 Heap-to-Heap Network Transfer
Given that the size of data to be transmitted increases, the real ques-
tion is whether or not the end-to-end performance of transmitting a
heap object from one heap to another is improved by use of a com-
pact normal form. With a fast network, we expect to have some
slack: on a 1 Gbit connection, an extra 240 megabytes for a 223

size binary tree costs us an extra 2.01 seconds; if serializing takes
6.92 seconds, we can easily make up for the slack (and things are
better as more bandwidth is available).

Figure 4 shows the relative improvement for the end-to-end
latency compact normal forms achieve relative to existing solutions
for binary and Java. We see that for low tree sizes, constant factors
and the overall round trip time of the network dominate; however,
as data gets larger serialization cost dominates and our network
performance improves.

5.4 Persistence: Memory-mapped Files
While communicating messages between machines is the main use
case we’ve discussed, it’s also important to send messages through
time, rather than space, by writing them to disk. In particular, not
all on-disk storage is meant for archival purposes—sometimes it
is transient, for caching purposes or communicating data between
phases of an application. In Map-Reduce jobs, data is written out
between rounds. Or in rendering pipelines used by movie studies,
all geometry and character data is generated and written to disk
from an earlier phase of the pipeline, and then repeatedly shaded in
a later stage of the pipeline. For these use cases, storing in Compact
format directly on disk is a feasible alternative.

Here we consider a scenario where we want to process the
twitter data set discussed previously. The original data-set is stored
on-disk in JSON format, so the natural way to process it would be to
read that JSON. For this purpose, the standard approach in Haskell
would use the efficient Aeson library1. We use Data.Aeson.TH to
derive instances which parse the on-disk format to the in-memory
format shown in Figure 2.

The first scenario we consider requires reading full dataset
through memory, in particular we count how many occurrences
of the “cat” hashtag occur in the dataset, while we vary the size
of the dataset read from 1MB to 1024MB. “Aeson/all” in Figure 5
shows the result. Reading the full gigabyte takes substantial time—
55 seconds. “Compact/all” shows an alternative strategy. We cache
a Compact representation on disk, using a format where each block
is a separate file. We can then mmap these blocks directly into
RAM upon loading, and allow the OS to perform demand paging
whenever we access the data. At the full 1GB size, this approach is
21.3⇥ faster than using Aeson to load the data.2

1 https://hackage.haskell.org/package/aeson
2 We were not able to disable disk-caching on the evaluation platform
(requiring root access), but we report the median result of 5 trials for all
data points.

 100

Figure 5: Time spent to load N megabytes of Twitter metadata
to access respectively one item at random or process all items
sequentially, when loading the JSON directly with Aeson compared
to loading a preprocessed Compact file from disk.

Finally, we also consider a sparse data access strategy. What if
we want to read a specific tweet from the middle of the data set?
This scenario measured in the “/one” variants of Figure 5. Here, we
still map the entire Compact into memory. But the OS only needs
to load data for the specific segments we access, no matter where
they fall. As a result Compact/one still increases linearly (time for
system calls to map O(N) blocks), but the gap widens substantially
between it and Aeson/one. The traditional parsing approach must
parse half of the data set to reach the middle, resulting in 26.6
seconds to access a tweet in the middle of the 1GB dataset, rather
than 0.26 seconds for Compact.

5.5 Garbage Collection Performance
One of the stated benefits of compact normal forms is that objects in
a compact region do not have to be traced. Unfortunately, we cannot
in general give an expected wall clock improvement, since the
specific benefit in an application depends on what data is converted
to live in a compact region. Additionally, not all data is suitable
for placement in a compact region: if a data structure is rapidly
changing compact regions will waste a lot of memory storing dead
data.

To give a sense of what kinds of improvements you might
see, we constructed a few synthetic benchmarks based on patterns
we’ve seen in workloads where garbage collector performance is
influential:

• p threads concurrently allocate a list of elements into a compact
region. This is a baseline showing the best-case improvement,
since no elements become dead when a new cell is consed onto
a list.

• p threads concurrently allocate a list of elements, but rooted in
a single vector. This is meant to illustrate an example where
adding a compact region could help a lot, since GHC’s existing
parallel garbage collector scales poorly when the initial roots
are not distributed across threads.

In all of these experiments, the data allocated by each thread
is kept live until the end of the test run, simulating immortal data
which is allocated but never freed.

In Figure 6 we can see the improvement in median running
time for these two experiments when the operations happen for a
list that lives in a compact region as opposed to the normal heap,

8 2015/5/30

Figure 6: Median time for 16 threads to complete each N/16
insertions in 16 lists, where the lists are owned by the threads
separately or are referenced by a shared Vector (IORef [a]). We
can see that in normal Haskell times are influenced by GC pauses,
which are greatly reduced for Compacts, despite the need to copy
upfront. Java is included as a comparison, to show that Compact
can improve performance even against a well tuned fast parallel
GC.

Figure 7: Percentage of CPU time spent in the mutator (as opposed
to GC) for 16 threads to complete each N/16 insertions in 16 lists,
showing the increasing effect of tracing long lived data. Despite us-
ing a generational algorithm, the effect of major GCs is so promi-
nent in normal Haskell that only a small fraction of time is spent in
the real computation.

while in Figure 7 we can observe the influence of GC in the overall
time, which is greatly reduced in the compact case, allowing a more
efficient use of resources.

One observation from these experiments is that it is important
that the most or all of the existing compact data structure is reused
by the mutator — otherwise, the excessive copies into the compact
region of soon to be unused data become predominant in the total
cost.

Additionally, because copying into Compact counts as alloca-
tion, this double allocation factor introduces memory pressure that
triggers more garbage collections: while GC is faster in presence of
compact regions, minor collections have to trace the new temporary
objects that are allocated prior to copying into the compact region,
and that is an added cost if the objects are short lived.

One way to overcome this limitation is to copy the data into
a new compact region after a certain number of updates, just like
a copying GC would do, such that the amount of unused values
is always limited. In our current implementation this is a manual
process and relies on the programmer to know the space complexity
of the data structure being updated as well as the access patterns

from the application (possibly with the help of profiling), but future
work could explore efficient heuristics to automate this.

Conversely, it may be interesting to observe that because the
GC does not trace the internals of compacts, the GC pauses are
less dependent on the layout of the data in memory and how it was
computed, making them not only shorter but also more predictable
for environments with latency constraints.

5.6 Zero-copy Network Transfer using RDMA
High-performance computing environments—as well as large data
centers—typically are comprised of tightly-coupled machines net-
worked using low-latency, high-throughput, switched fabrics such
as Infiniband or high-speed Ethernet. Remote Direct Memory Ac-
cess (RDMA) enables a source machine to remotely access a desti-
nation machine’s memory without any active participation from the
latter. In essence, RDMA decouples data movement from synchro-
nization in communication between hosts. RDMA-enabled net-
work hardware is set up to access a remote processor’s memory
without involving the operating system on either end. This elim-
inates synchronization overheads and multiple redundant copies,
achieving the lowest possible latency for data movement.

The promise of fast, low-latency RDMA communication, how-
ever, is often thwarted by pragmatic issues such as explicit buffer
management and synchronization, and the fact that RDMA APIs
are low-level and verbose to program with. In contemporary
RDMA networking hardware, a host application is required to pin
the memory that it wants to expose for transfers. The operating sys-
tem populates page table entries (PTE) associated with this pinned
buffer such that all subsequent accesses to memory bypass the OS
(the Network Interface Card (NIC) can directly DMA to or from
the locked memory). Further, a source machine requires a handle
to the remote memory that it wants to access. Thus, there is often
a rendezvous required between peers before they can communicate
with each other.

Modern high-performance communication libraries offer sev-
eral features built on top of the raw RDMA API to ease mes-
sage passing over the network. Each peer reserves pre-pinned ring
buffers for every other peer, which are used for transferring small
messages. A peer maintains an approximate pointer into a eager
ring buffer which is used as an index into remote memory. When a
peer suspects that it might overflow the remote buffer, it reclaims
space by synchronizing with the remote peer. Large messages are
sent by sending a handle to the memory, and requesting the tar-
get to get the memory associated with the handle. In addition to
raw remote memory access (RMA), message passing libraries also
provide a RPC mechanism for invoking handlers on the transferred
remote data.

We have already discussed the interaction of CNFs with net-
work communication, and demonstrated the claimed performance
improvements in Section 5.3. Here we consider true zero-copy
transfer of heap objects between two networked machines. The two
cases that we evaluated are shown in Figures 8a and 8b.

Consider a case where a client wants to send a pointer-based
data structure to the server. With RDMA, the client needs to know
where to put the data in the server’s memory. In the approach
demonstrated in Figure 8a that we refer to as the eager (push-
based) protocol, the server sends a handle to a pinned region in its
memory per a client’s request. The client has to serialize the data
structure into a contiguous memory region if the structure is not in
CNF. The client puts into remote memory and notifies the server
of completion. All of the protocol messages are exchanged over
a control channel also implemented on top of RDMA using eager
ring buffers. Finally, the server deserializes the received structure
incurring an extra copy and the penalty of fixing up internal point-
ers if the structure is in CNF.

9 2015/5/30

Note: “Aeson” is a
High-performance
JSON-parsing library

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16 18 20

R
un

 T
im

e
(m

s)

Elements (millions)

Dot product

Data.Vector
Repa -N8

NDP2GPU
Accelerate -fusion

... +fusion
CUBLAS

 1

 10

 100

 2 4 6 8 10 12 14 16 18 20

Ru
n

Ti
m

e
(m

s)

Options (millions)

Black-Scholes

Accelerate -sharing
... +sharing

CUDA

 0.1

 1

 10

 100

 1000

1k 2k 4k 8k 16k 32k

R
un

 T
im

e
(m

s)

Bodies

N-Body

Accelerate -fusion -sharing
... -fusion +sharing
... +fusion +sharing

CUDA

 0.1

 1

 10

 100

 1000

64k 256k 1M 4M 16M

Ru
n

Ti
m

e
(m

s)

Image Size (total pixels)

Canny Edge Detection

Accelerate (whole program)
Accelerate (just GPU kernels)

OpenCV (CPU)
OpenCV (GPU)

 1

 10

 100

 1000

 10000

8k 16k 32k 64k 128k 256k 512k 1M 2M

R
un

 T
im

e
(m

s)

Image Size (total pixels)

Fluid Flow

C sequential
Repa -N7

Accelerate -sharing
... +sharing

 1

 10

 100

 1000

 0.2 0.4 0.8 1.6

R
un

 T
im

e
(m

s)

Elements (millions)

Radix Sort

Accelerate -fusion -sharing
... -fusion +sharing
... +fusion +sharing

Thrust

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45 50

Sp
ee

du
p

vs
. R

ep
a

@
 1

 T
hr

ea
d

Threads

Black-Scholes

Repa
Accelerate (LLVM-CPU)

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40 45 50

Sp
ee

du
p

vs
. R

ep
a

@
 1

 T
hr

ea
d

Threads

Mandelbrot

Repa
Accelerate (LLVM-CPU)

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40 45 50

Sp
ee

du
p

vs
. R

ep
a

@
 1

 T
hr

ea
d

Threads

N-Body

Repa
Accelerate (LLVM-CPU)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45 50

Sp
ee

du
p

vs
. R

ep
a

@
 1

 T
hr

ea
d

Threads

Ray tracer

Repa
Accelerate (LLVM-CPU)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0 5 10 15 20 25 30 35 40 45 50

Sp
ee

du
p

vs
. H

as
hc

at
 @

 1
 T

hr
ea

d

Threads

MD5 hash

Hashcat
Accelerate (LLVM-CPU)

Delite/LMS [6, 38, 39] is a parallelisation framework for DSLs
in Scala that uses library-based multi-pass staging to specify com-
plex optimisations in a modular manner. Like Accelerate, Delite is
a modular system that supports multiple code generators and targets
CPU and GPU systems. Unlike Accelerate, its compiler pipeline is
not type preserving, and code generation is by pasting strings.

Vertigo [16], Nikola [29] and Obsidian [43] are EDSLs in
Haskell that generate GPU code. None of these systems preserves
source language types throughout the pipeline and none of them are
able to generate CPU and GPU code, or currently support multiple

backends. Moreover, Accelerate supports a significantly richer set
of types and computations.

References
[1] T. Altenkirch and B. Reus. Monadic Presentation of Lambda Terms

Using Generalised Inductive Types. In CSL ’99: Computer Science
Logic, pages 453–468, 1999.

[2] A. W. Appel. SSA is functional programming. ACM SIGPLAN
Notices, 33(4):17–20, 1998.

— DRAFT — DRAFT — DRAFT — DRAFT — 11 2015/5/30

