
Algorithms and architectures for N-body
methods

George Biros
XPS-DSD CCF-1337393
A2MA - Algorithms and Architectures for
Multiresolution Applications 2014-2017

Outline
•  Significance
•  Sketch or algorithm
•  Kernels
•  Challenges
•  Focus on HPC & single-node

performance

Team

PIs:
 George Biros (ICES)

 Robert van de Geijn (CS)
 Andreas Gerstlauer (ECE)
 Lizy John (ECE)

Students:
 Mochamad Asri, Jianyu Huang, Ahmed Khawaja,

 Dhairya Malhotra, Jiajun Wang, Chenhan Yu

Scalability and performance of tree algorithms

•  N-body: treecodes, Fast Multipole Methods

•  Finite elements
•  Goal: flop/watt efficiency
•  Performance

•  Characterization / Optimization
•  Redesign of concurrent/work-optimal algorithms

•  Integration with special-purpose ASIC
•  Linear Algebra Processor (LAP)
•  Novel hardware and software primitives

Applications of N-body algorithms

•  Cosmology – gravity

•  Electrostatics – semiconductors
•  Scattering – remote sensing

•  Biology – protein interactions
•  Mechanics – complex/fluids

•  Graphics – radial basis functions
•  Geostatistics – kringing
•  Signal analysis – non-uniform FFT
•  UQ – Gaussian processes
•  Machine learning – kernel methods

Sketch of N-body algorithms
 Essentially a matrix – vector multiplication problem

N-body methods, Kernel sums

Near-far field decomposition

Key idea in N-body: low-rank far field approx

=

111111111!

Matrix partitioning

Rd
Matrix partitioning

Algebraic view

Regular decompositions

Low dimensions High dimensions

Tree construction concurrency in low dimensions

Bottom-up construction of
tree
■ Space-filling curves for

partitioning; sorting;
merging; scanning

For each node: construction of neighborhoods

Near (leaves only)
Very far (parent)
Far

B

Far-field evaluation

Far field evaluation

Near-field evaluation

Overall algorithm

•  Construct tree
•  Upward pass – child-to-parent computations

•  For each node – neighborhood far-field computations
•  For each point/leaf node – near-field computations
•  Downward pass – parent-to-child computations

Scalability examples

Malhotra, Gholami, B., SC’14 Best Student Paper Finalist

TACC’s Stampede Xeon Phi + SandyBridge
25% peak performance 35% peak LINPACK

Single-node

Malhotra, Gholami, B., SC’14 Best Student Paper Finalist

Algorithmic redesign; data structure redesign, blocking and loop
reordering, OpenMP + AVX + SSE; prefetching; task parallelism,
asynchronous offload

Hardware + algorithms

Malhotra, Gholami, B., SC’14 Best Student Paper Finalist

N-body methods: Scalability requirements

Computational physics/chemistry/biology
•  large scale – 1E13 unknowns (3D/4D)

Graphics/signal analysis
•  real time – 1E6 unknowns (1D/4D)

Data analysis/Uncertainty quantification
•  large scale – 1E15 unknowns (1D - 1000D)
•  real time / streaming / online

Computational kernels

Kernels

Geometric – distance calculations / projections

Analytic – special functions / fast transforms / differentiation
Algebraic – near / far field

Combinatorial – tree traversals / pruning / sorting / merging
Statistical – sampling

Memory – reshuffling, packing, permutation, communication

Application – linear/non linear/optimization/time stepping /
multiphysics

Kernel examples [problem size / node]

•  Special function evaluations
•  Sorting/merging [1E5-1E9]

•  Median/selection [1-1E9]

•  Tree-traversals / neighborhood construction
•  Euclidean distance calculations [GEMM-like 100—4000)]
•  Nearest-neighbors [GEMM-like + heapsort]

•  Kernel evaluations [GEMM-like 100—4000]

•  FFTs [3D, size./dim O(10)-O(20)]
•  High-order polynomial evaluations
•  Rectangular GEMM [8-500 X 100000]

•  Pivoted QR factorizations [500 – 4000]

MNIST – 8 M points / 784 dimensions

OCR using multiclass kernel logistic regression

March, B. et al KDD’15

Nearest neighbor kernel

xi

xj

Problem with using off-the-shelf GEMM

Input : O(Nd)
Output : O(N k)
Calculations: O(N2d + N k logk)
Intermediate storage: O(N2 + Nk)

Custom GEMM + heap selection + arbitrary norms

Comparison with GEMM

GEMM – like on special hardware

Linear Algebra Processor, A. Gertslauer UT Austin

The perspective of high-level application and
library designers
 actually just my perspective - focus on single node only

Workflow

Model selection
Discretization - correctness and speed
Verification
Robustness / usability / reproducibility
Validation
PREDICT
High performance and efficiency

Our responsibility: develop algorithms that “respect” memory
hierarchies, promote/expose SIMD, are work-optimal,
concurrent, and fault tolerant

Our understanding of CPU performance

Our understanding of memory hierarchy

Our coding preference

4 lines of code
3 loops

The problem:
C=A*B, all A,B,C 4000-by-4000
1 CORE

Expected run time: 40003 * 2 / 21E9 = 6s
ICC -g : 80 s, 12X slower
ICC -O: 48 s 8X slower
ICC -O3: 25 s; 4X slower

8 CORES: 3.4 s vs 0.75 (~4.5X slower)
16 CORES: 2.6s vs 0.38 (~7X slower)
16 CORES, gcc -O3: 60secs (~100X slower)

2 x 8core-E5-2680 2.7GHz

Reality

Other applications that share same complexity

Geophysical applications
Plasma physics
Materials/Biology/Chemistry

Inference
Design
Data assimilation
Machine learning

MPI + X: OpenMP, OpenCL, OpenACC,
Pthreads, Intel TBB, CUDA, SSE/AVX

Challenges for HPC

Large and constantly evolving design space
Expanding complexity of simulation and data analysis
Expanding complexity of programming tools
Expanding complexity of underlying hardware
Expanding complexity of profiling tools
Absence of common abstract parallel machine model
Static/synchronous scheduling increasingly hard
Heterogeneous architectures
Fault tolerance / resiliency
End-to-end scalability

Gaps in

•  programmability
•  productivity
•  maintenability
•  performance
•  scalability
•  portability
•  accessibility
•  energy efficiency
•  reproducibility

Large percentage of
production scientific codes ~
1-0.1% efficiency

Would be happy to have
productivity tools that can
raise performance to 10%

Requires 10X to 100X
improvements

Wish list (besides faster hardware)

•  Slower compilers
•  Language support for multithreading, SIMD, and

DAGs
•  Memory hierarchy abstraction
•  Language support for memory hierarchy

•  Async communication primitives (gather/scatter, reduce/
broadcast, scans, all-to-all)

•  “Eliminate” accelerators
•  Standard library/language support

•  parallel I/O, special functions, sparse/dense linear algebra, trees, sort/search/
scan/select

Future directions

Need more research on parallel algorithms
 algorithmic improvements have, typically, the
largest impact

Need better abstractions for hierarchical memories

and heterogeneous hardware

Need more stable and predictable programming APIs

Conclusions and summary

N-body codes
 multiple kernels, data-structures
Algorithmic challenges
 focus on data movement

Productivity challenges

Publications
Khawaja et al; ICPADS 14
Pedram et al; IEEE TC 14
Malhotra et al; SC 14; SISC 15; ACM TOMS 15
March et al; SISC 15, IPDPS 15, KDD 15

