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Scalability and performance of tree algorithms 

•  N-body: treecodes, Fast Multipole Methods 

•  Finite elements  
•  Goal:   flop/watt efficiency 
•  Performance   

•  Characterization / Optimization  
•  Redesign of concurrent/work-optimal algorithms 

•  Integration with special-purpose ASIC  
•  Linear Algebra Processor (LAP) 
•  Novel hardware and software primitives 



Applications of N-body algorithms 

•  Cosmology – gravity  

•  Electrostatics – semiconductors  
•  Scattering – remote sensing 

•  Biology – protein interactions 
•  Mechanics – complex/fluids 

•  Graphics – radial basis functions 
•  Geostatistics – kringing  
•  Signal analysis – non-uniform FFT 
•  UQ – Gaussian processes 
•  Machine learning – kernel methods 



Sketch of N-body algorithms 
 Essentially a matrix – vector multiplication problem 



N-body methods,  Kernel sums 



Near-far field decomposition 



Key idea in N-body: low-rank far field approx 
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Matrix partitioning 

Rd 
Matrix partitioning 



Algebraic view 



Regular decompositions 

Low dimensions                           High dimensions 



Tree construction concurrency in low dimensions 

Bottom-up construction of 
tree 
■ Space-filling curves for 

partitioning; sorting; 
merging; scanning 

 

 
 
 
 
 



For each node: construction of neighborhoods 

Near (leaves only) 
Very far (parent) 
Far  

B 



Far-field evaluation 

 
 
 
 
 
 

 
 
 
 
 

 



Far field evaluation 

 
 
 
 
 

 
 



Near-field evaluation 

 
 
 
 
 

 



Overall algorithm 

•  Construct tree 
•  Upward pass – child-to-parent computations 

•  For each node – neighborhood far-field computations  
•  For each point/leaf node –  near-field computations 
•  Downward pass – parent-to-child computations 



Scalability examples 

Malhotra, Gholami, B., SC’14    Best Student Paper Finalist 

TACC’s Stampede Xeon Phi + SandyBridge 
25% peak performance   35% peak  LINPACK  



Single-node  

Malhotra, Gholami, B., SC’14    Best Student Paper Finalist 

Algorithmic redesign;  data structure redesign, blocking and loop  
reordering,  OpenMP + AVX + SSE; prefetching; task parallelism,  
asynchronous offload   



Hardware + algorithms 

Malhotra, Gholami, B., SC’14    Best Student Paper Finalist 



N-body methods: Scalability requirements 

Computational physics/chemistry/biology 
•  large scale – 1E13  unknowns (3D/4D) 
 
Graphics/signal analysis    
•  real time – 1E6 unknowns (1D/4D) 
 
Data analysis/Uncertainty quantification 
•  large scale – 1E15 unknowns  (1D - 1000D) 
•  real time / streaming / online  



Computational kernels 



Kernels  

Geometric – distance calculations / projections 

Analytic – special functions / fast transforms / differentiation 
Algebraic – near / far field 

Combinatorial – tree traversals / pruning / sorting / merging 
Statistical – sampling 

Memory – reshuffling, packing, permutation, communication 

Application – linear/non linear/optimization/time stepping /  
multiphysics 



Kernel examples  [problem size / node] 

•  Special function evaluations 
•  Sorting/merging [1E5-1E9] 

•  Median/selection [1-1E9] 

•  Tree-traversals / neighborhood construction 
•  Euclidean distance calculations  [ GEMM-like  100—4000 ) ] 
•  Nearest-neighbors  [  GEMM-like + heapsort ] 

•  Kernel evaluations [ GEMM-like  100—4000 ] 

•  FFTs [3D, size./dim O(10)-O(20)] 
•  High-order polynomial evaluations 
•  Rectangular GEMM [ 8-500 X 100000] 

•  Pivoted QR factorizations [500 – 4000] 



MNIST – 8 M points / 784 dimensions 

OCR using multiclass kernel logistic regression 
 

March, B.  et al KDD’15 



Nearest neighbor kernel 

xi 

xj 



Problem with using off-the-shelf GEMM 

Input : O(Nd) 
Output : O(N k) 
Calculations:  O(N2d + N k logk) 
Intermediate storage:  O(N2 + Nk) 



Custom GEMM + heap selection + arbitrary norms 



Comparison with GEMM 



GEMM – like on special hardware  

Linear Algebra Processor,  A. Gertslauer UT Austin 



The perspective of high-level application and 
library designers 
    actually just my perspective  - focus on single node only 



Workflow 

Model selection 
Discretization - correctness and speed 
Verification 
Robustness / usability / reproducibility 
Validation 
PREDICT 
High performance and efficiency 

Our responsibility: develop algorithms that “respect” memory 
hierarchies, promote/expose SIMD, are work-optimal,  
concurrent, and fault tolerant 



Our understanding of CPU performance 



Our understanding of memory hierarchy 



Our coding preference 

4 lines of code 
3 loops 



The problem: 
C=A*B,   all A,B,C  4000-by-4000 
1 CORE 

Expected run time: 40003  * 2  /  21E9 = 6s 
ICC -g : 80 s,     12X slower 
ICC -O: 48 s      8X slower 
ICC -O3: 25 s;   4X slower 

 
8 CORES: 3.4 s  vs  0.75         (~4.5X slower) 
16 CORES: 2.6s  vs  0.38         (~7X slower) 
16 CORES, gcc -O3: 60secs     (~100X slower) 

2 x 8core-E5-2680 2.7GHz  



Reality 



Other applications that share same complexity 

Geophysical applications 
Plasma physics 
Materials/Biology/Chemistry 
 
Inference 
Design 
Data assimilation 
Machine learning 
 



 
MPI + X: OpenMP, OpenCL, OpenACC, 
Pthreads, Intel TBB, CUDA, SSE/AVX 



Challenges for HPC 

Large and constantly evolving design space 
Expanding complexity of simulation and data analysis 
Expanding complexity of programming tools 
Expanding complexity of  underlying hardware 
Expanding complexity of profiling tools 
Absence of common abstract parallel machine model 
Static/synchronous scheduling increasingly hard 
Heterogeneous architectures 
Fault tolerance / resiliency 
End-to-end scalability 



Gaps in 

•  programmability 
•  productivity 
•  maintenability 
•  performance 
•  scalability 
•  portability 
•  accessibility 
•  energy efficiency 
•  reproducibility 
 
 

Large percentage of 
production  scientific codes ~ 
1-0.1% efficiency 
 
 
Would be happy to have 
productivity tools that can 
raise performance to 10% 
 
Requires 10X to 100X 
improvements 
 
 
 



Wish list (besides faster hardware) 

•  Slower compilers 
•  Language support for multithreading, SIMD, and 

DAGs 
•  Memory hierarchy abstraction 
•  Language support for memory hierarchy 

•  Async communication primitives (gather/scatter, reduce/
broadcast, scans, all-to-all) 

•  “Eliminate” accelerators 
•  Standard library/language  support 

•  parallel I/O, special functions, sparse/dense linear algebra, trees, sort/search/
scan/select 

 



Future directions 

Need more research on parallel algorithms  
 algorithmic improvements have, typically, the 
largest impact  

 
Need better abstractions for hierarchical memories 

and heterogeneous hardware 
 
Need more stable and predictable programming APIs 



Conclusions and summary 

N-body codes  
   multiple kernels, data-structures 
Algorithmic challenges 
  focus on data movement 

Productivity  challenges 
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