# Algorithms and architectures for N-body methods



George Biros

XPS-DSD CCF-1337393

A2MA - Algorithms and Architectures for Multiresolution Applications 2014-2017

#### Outline

- Significance
- Sketch or algorithm
- Kernels
- Challenges
- Focus on HPC & single-node performance

# FOR COMPUTATIONAL ENGINEERING & SCIENCES





#### Team

## Pls:

George Biros (ICES) Robert van de Geijn (CS) Andreas Gerstlauer (ECE) Lizy John (ECE)

## Students:

Mochamad Asri, Jianyu Huang, Ahmed Khawaja,

Dhairya Malhotra, Jiajun Wang, Chenhan Yu

Electrical and Computer Engineering







## Scalability and performance of tree algorithms

- N-body: treecodes, Fast Multipole Methods
- Finite elements
- Goal: flop/watt efficiency
- Performance
  - Characterization / Optimization
  - Redesign of concurrent/work-optimal algorithms
- Integration with special-purpose ASIC
  - Linear Algebra Processor (LAP)
  - Novel hardware and software primitives

## **Applications of N-body algorithms**

- Cosmology gravity
- Electrostatics semiconductors
- Scattering remote sensing
- **Biology** protein interactions
- Mechanics complex/fluids
- Graphics radial basis functions
- Geostatistics kringing
- Signal analysis non-uniform FFT
- UQ Gaussian processes
- Machine learning kernel methods



#### Sketch of N-body algorithms Essentially a matrix – vector multiplication problem



![](_page_5_Picture_1.jpeg)

## Near-far field decomposition

#### Key idea in N-body: low-rank far field approx

![](_page_7_Figure_1.jpeg)

x: Target point
x<sub>j</sub>: source location
w<sub>j</sub>: weight for sources

 $u(x) = \sum_{j} G(x, x_j) w_j$ 

1. compute  $W = \sum_{i} w_{j}$ 2. compute  $x_{W} = \frac{\sum_{j} x_{j} w_{j}}{W}$ 3.  $u(x) \approx G(x, x_{W})W$ 

## Matrix partitioning

![](_page_8_Figure_1.jpeg)

![](_page_8_Figure_2.jpeg)

Matrix partitioning

**Algebraic view** 

 $G_{ij}w_j +$  $G_{ij}w_j$  $u_i =$  $j \in \text{off} - \text{diagonal}(i)$  $j \in \text{diagonal}(i)$ 

![](_page_9_Figure_2.jpeg)

## **Regular decompositions**

## Low dimensions

## High dimensions

![](_page_10_Figure_3.jpeg)

![](_page_10_Figure_4.jpeg)

#### **Tree construction concurrency in low dimensions**

Bottom-up construction of

tree

Space-filling curves for partitioning; sorting; merging; scanning

![](_page_11_Figure_4.jpeg)

![](_page_11_Figure_5.jpeg)

#### For each node: construction of neighborhoods

![](_page_12_Figure_1.jpeg)

#### **Far-field evaluation**

![](_page_13_Picture_1.jpeg)

![](_page_13_Figure_2.jpeg)

#### Far field evaluation

![](_page_14_Picture_1.jpeg)

![](_page_14_Figure_2.jpeg)

#### **Near-field evaluation**

![](_page_15_Picture_1.jpeg)

![](_page_15_Figure_2.jpeg)

## **Overall algorithm**

- Construct tree
- Upward pass child-to-parent computations
- For each node neighborhood far-field computations
- For each point/leaf node near-field computations
- **Downward pass** parent-to-child computations

![](_page_16_Figure_6.jpeg)

![](_page_16_Figure_7.jpeg)

![](_page_16_Picture_8.jpeg)

![](_page_16_Picture_9.jpeg)

![](_page_16_Figure_10.jpeg)

#### **Scalability examples**

![](_page_17_Picture_1.jpeg)

| p    | $N_{ m dof}/p$     | $N_{ m iter}$ | $T_{solve}$ | TFLOPS | $\eta$ |
|------|--------------------|---------------|-------------|--------|--------|
| 1    | $8.0 \pm 6$        | 155           | 477         | 0.36   | 1.00   |
| 6    | 7.8E + 6           | 115           | 388         | 2.27   | 1.04   |
| 27   | 8.6E + 6           | 101           | 401         | 10.3   | 1.05   |
| 125  | $8.5 \pm 6$        | 98            | 419         | 45.3   | 0.99   |
| 508  | 8.9 E + 6          | 92            | 444         | 173    | 0.94   |
| 2048 | $9.1 \text{E}{+6}$ | 90            | 474         | 656    | 0.88   |

#### TACC's Stampede Xeon Phi + SandyBridge 25% peak performance 35% peak LINPACK

Malhotra, Gholami, B., SC'14 Best Student Paper Finalist

## Single-node

![](_page_18_Picture_1.jpeg)

Single node performance: 16-core Xeon, Intel Phi

|          | Near |        | Far  |        | All  |        |         |
|----------|------|--------|------|--------|------|--------|---------|
|          | T    | GFLOPS | T    | GFLOPS | T    | GFLOPS | Speedup |
| Original | 6.9  | 235    | 18.5 | 16     | 25.8 | 77     | 1.0     |
| CPU Only | 6.0  | 270    | 2.8  | 123    | 9.1  | 223    | 2.8     |
| CPI+Phi  | 3.3  | 496    | 2.9  | 117    | 3.4  | 596    | 7.6     |

Algorithmic redesign; data structure redesign, blocking and loop reordering, OpenMP + AVX + SSE; prefetching; task parallelism, asynchronous offload

Malhotra, Gholami, B., SC'14 Best Student Paper Finalist

## Hardware + algorithms

![](_page_19_Picture_1.jpeg)

|                  |        | CPU                |        | CPU+Phi            |        | CPU+GPU            |        |
|------------------|--------|--------------------|--------|--------------------|--------|--------------------|--------|
| $\boldsymbol{q}$ | Noct   | T <sub>solve</sub> | GFLOPS | T <sub>solve</sub> | GFLOPS | T <sub>solve</sub> | GFLOPS |
| 8                | 32,768 | 1026.4             | 148    | 940.0              | 162    | 942.9              | 161    |
| 12               | 4,096  | 183.5              | 184    | 129.3              | 262    | 123.9              | 273    |
| 16               | 4,096  | 384.3              | 242    | 159.5              | 582    | 140.2              | 662    |
| 8                | 4,656  | 118.8              | 160    | 101.0              | 188    | 97.4               | 195    |
| 12               | 1,240  | 63.4               | 179    | 31.4               | 360    | 30.3               | 374    |
| 16               | 232    | 38.8               | 147    | 15.6               | 366    | 9.8                | 579    |

Malhotra, Gholami, B., SC'14 Best Student Paper Finalist

## N-body methods: Scalability requirements

Computational physics/chemistry/biology

large scale – IEI3 unknowns (3D/4D)

Graphics/signal analysis

real time – IE6 unknowns (ID/4D)

Data analysis/Uncertainty quantification

- large scale IEI5 unknowns (ID I000D)
- real time / streaming / online

#### **Computational kernels**

#### Kernels

Geometric – distance calculations / projections

Analytic – special functions / fast transforms / differentiation

Algebraic – near / far field

**Combinatorial** – tree traversals / pruning / sorting / merging

Statistical – sampling

**Memory** – reshuffling, packing, permutation, communication

Application – linear/non linear/optimization/time stepping / multiphysics

#### Kernel examples [problem size / node]

- Special function evaluations
- Sorting/merging [IE5-IE9]
- Median/selection [1-1E9]
- Tree-traversals / neighborhood construction
- Euclidean distance calculations [GEMM-like 100-4000)]
- Nearest-neighbors [ GEMM-like + heapsort ]
- Kernel evaluations [GEMM-like 100-4000]
- **FFTs** [3D, size./dim O(10)-O(20)]
- High-order polynomial evaluations
- Rectangular GEMM [ 8-500 × 100000]
- Pivoted QR factorizations [500 4000]

## MNIST – 8 M points / 784 dimensions

March, B. et al KDD'15

## OCR using multiclass kernel logistic regression

| #cores           | 512       | 2,048 | 4,096 | 8,192 | 16,384 |
|------------------|-----------|-------|-------|-------|--------|
| Skel. $(Alg. 2)$ | 1,295     | 465   | 370   | 305   | 269    |
| Lists (Alg. 3)   | 729       | 177   | 87    | 46    | 23     |
| LET (Eq. 7)      | 273       | 136   | 107   | 87    | 71     |
| Eval. (Eq. 14)   | 157       | 67    | 42    | 28    | 23     |
| Total            | $2,\!471$ | 862   | 621   | 483   | 394    |
| Efficiency       | 1.00      | 0.72  | 0.50  | 0.32  | 0.20   |

![](_page_25_Figure_0.jpeg)

 $= \|x_i\|_2^2 + \|x_j\|_2^2 - 2x_i^T x_j$ 

## Problem with using off-the-shelf GEMM

Input : O(Nd)

Output : O(N k)

Calculations:  $O(N^2d + N k \log k)$ 

Intermediate storage:  $O(N^2 + Nk)$ 

Algorithm 2.1 GEMM Approach to k-Nearest Neighbor  $C = -2Q^T R;$  //GEMM(-2,  $Q^T$ , R, 0, C); for each query i and reference j do  $C(i, j) + = Q_2(i) + R_2(j);$  // $-2x_i^T x_j + ||x_i||_2^2 + ||x_j||_2^2;$ end for for each query i do Update  $< \mathcal{N}(i, :), \mathcal{D}(i, :) >$  with < r(:), C(i, :) >end for

#### **Custom GEMM + heap selection + arbitrary norms**

![](_page_27_Figure_1.jpeg)

#### **Comparison with GEMM**

![](_page_28_Figure_1.jpeg)

#### **GEMM – like on special hardware**

![](_page_29_Figure_1.jpeg)

Linear Algebra Processor, A. Gertslauer UT Austin

# The perspective of high-level application and library designers

actually just my perspective - focus on single node only

#### Workflow

Model selection

Discretization - correctness and speed

Verification

Robustness / usability / reproducibility

Validation

## PREDICT

High performance and efficiency

Our responsibility: develop algorithms that "respect" memory hierarchies, promote/expose SIMD, are work-optimal, concurrent, and fault tolerant

#### Our understanding of CPU performance

Peak FLOPs =

Number of cores × FLOPS per instruction × Instruction per cycle × Cycles per second (Task-Level Parallelism) (SIMD and FMA) (Instruction Level Parallelism) (Frequency)

#### Our understanding of memory hierarchy

![](_page_33_Figure_1.jpeg)

#### **Our coding preference**

Compute  $C \leftarrow C + A \cdot B$ 

![](_page_34_Figure_2.jpeg)

for i=1:n
 for j=1:n
 for k=1:n
 C(i,j) += A(i,k)\*B(k,j)

4 lines of code 3 loops

## The problem:

# C=A\*B, all A,B,C 4000-by-4000 I CORE

**Expected run time:** 4000<sup>3</sup> \* 2 / 21E9 = **6**S

- ICC -g : 80 s, I2X slower
- ICC -O: 48 s 8X slower
- ICC -O3: 25 s; 4X slower

8 CORES: 3.4 s vs 0.75 16 CORES: 2.6s vs 0.38 16 CORES, gcc -O3: 60secs (~100X slower)

(~4.5X slower)

- (~7X slower)

2 x 8core-E5-2680 2 7GHz

## Reality

![](_page_36_Figure_1.jpeg)

MMMM

![](_page_36_Figure_2.jpeg)

## Other applications that share same complexity

Geophysical applications Plasma physics Materials/Biology/Chemistry

Inference

Design

Data assimilation

Machine learning

![](_page_37_Picture_6.jpeg)

## MPI + X: OpenMP, OpenCL, OpenACC, Pthreads, Intel TBB, CUDA, SSE/AVX

![](_page_38_Figure_1.jpeg)

![](_page_38_Picture_2.jpeg)

![](_page_38_Figure_3.jpeg)

![](_page_38_Figure_4.jpeg)

# Challenges for HPC

Large and constantly evolving design space Expanding complexity of simulation and data analysis Expanding complexity of programming tools Expanding complexity of underlying hardware Expanding complexity of profiling tools Absence of common abstract parallel machine model Static/synchronous scheduling increasingly hard Heterogeneous architectures Fault tolerance / resiliency End-to-end scalability

# Gaps in

- programmability
- productivity
- maintenability
- performance
- scalability
- portability
- accessibility
- energy efficiency
- reproducibility

Large percentage of production scientific codes ~ 1-0.1% efficiency

Would be happy to have productivity tools that can raise performance to 10%

Requires 10X to 100X improvements

## Wish list (besides faster hardware)

![](_page_41_Picture_1.jpeg)

- Slower compilers
- Language support for multithreading, SIMD, and DAGs
- Memory hierarchy abstraction
- Language support for memory hierarchy
  - Async communication primitives (gather/scatter, reduce/ broadcast, scans, all-to-all)
- "Eliminate" accelerators
- Standard library/language support
  - parallel I/O, special functions, sparse/dense linear algebra, trees, sort/search/ scan/select

#### **Future directions**

Need more research on parallel algorithms algorithmic improvements have, typically, the largest impact

Need better abstractions for hierarchical memories and heterogeneous hardware

Need more stable and predictable programming APIs

## **Conclusions and summary**

## N-body codes

multiple kernels, data-structures

Algorithmic challenges

focus on data movement

## Productivity challenges

Publications Khawaja et al; ICPADS 14 Pedram et al; IEEE TC 14 Malhotra et al; SC 14; SISC 15; ACM TOMS 15 March et al; SISC 15, IPDPS 15, KDD 15

![](_page_43_Picture_7.jpeg)