
D. A. Donzis1, L. Rauchwerger2, R. Bhattacharya1, S. Girimaji1, N. Amato2

1Department of Aerospace Engineering, Texas A&M University
2Department of Computer Science, Texas A&M University

Turbulence and Advanced Computations Lab (TACL)
Parasol Laboratory
Laboratory for Uncertainty Quantification

NSF XPS Workshop, Arlington, VA
May 31-June 2, 2015

Acknowledgments: NSF, XSEDE (TACC/NICS), NERSC, ORNL, ANL
Turbulence: most common state of fluid motions in nature and engineering
 - aerodynamics, clouds, ocean, reacting flows, pollutant dispersion, origin of universe, etc.
 - “Last unsolved problem in classical physics” - Richard Feynman

Unsteady, 3D, stochastic, wide range of nonlinearly interacting scales

Direct Numerical Simulations: resolve all scales in time and space
 - Computationally extremely expensive
 - Communication/sync: 50-80% time on current PF machines¹

¹Jagannathan & Donzis (XSEDE 2012), Sankaran et al. (SC 2012), Lee et al. (SC 2013)
Turbulence simulations at Exascale

Issues with current methods: finite diff./vol./elem., spectral,...
- Communications
- Synchronizations at multiple levels (especially math!)
- Variability in PEs performance, system failures, ...

Need new approach
- Can we relax data synchronization at mathematical level?
- Asynchronous numerical schemes: virtually no work on PDEs...
- Objective: trade-off accuracy and performance quantitatively and predictably
Main idea

Consider the simple 1D heat equation

\[\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} \]

Discretized equation - forward in time and central in space

\[\frac{u_i^{n+1} - u_i^n}{\Delta t} = \alpha \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2} + \mathcal{O}(\Delta t, \Delta x^2) \]
Relax synchronizations

\(u_{i-1}^{\tilde{n}} \) is the available data at \((i - 1)\)th grid point

\[
\frac{u_{i}^{n+1} - u_{i}^{n}}{\Delta t} = \alpha \frac{u_{i+1}^{n} - 2u_{i}^{n} + u_{i-1}^{n}}{\Delta x^2} + \mathcal{O}(\Delta t^?, \Delta x^?)
\]

PE boundary points are at \(\tilde{n} = n - \tilde{k} \) th level: random!

Need strong collaboration: numerical analysis, dynamical systems, computer science, physics of fluids
Results

Strong scaling (Hopper/NERSC)

1D diffusion problem

Parameters:
- # of PEs: $P = 4$
- Allowed delays: $L = 2$
- Probabilities: $p_k = \{0.6, 0.4\}$
Accuracy - Overall

- How to define trunc. error? Not homogeneous in space & random
 - Statistically: spatial ($\langle E \rangle$) and ensemble (\overline{E}) averages

- We’ve shown that asymptotic truncation error with asynchrony is
 $$\langle E \rangle \sim \bar{k} \frac{P}{N} \sim \bar{k} P \Delta x$$

- Error depends on standard numerical parameters (e.g. N) but also on (i) system details (delays stats.), (ii) how problem is scaled up

- Strong scaling: $\langle E \rangle \sim \mathcal{O}(\Delta x)$ — Weak scaling: $\langle E \rangle \sim \mathcal{O}(1)$
 - Verified by numerical experiments

(Donzis, Aditya JCP 2014)
Asynchrony-Tolerant (AT) schemes

- Idea: study truncation error and eliminate terms that affect accuracy

Order recovery in space (2nd order)

\[
\frac{\partial^2 u}{\partial x^2} \approx \frac{u_{i+2}^{n-k} - u_{i+1}^{n-k} - u_i^n + u_{i-1}^n}{2\Delta x^2}
\]

Order recovery in time (4th order)

\[
\frac{\partial^2 u}{\partial x^2} \approx \frac{1}{24\Delta x^2} \left[(k + 1)(k + 2)(-u_{i-2}^{n-k} + 16u_{i-1}^{n-k} - 30u_i^n + 16u_{i+1}^n - u_{i+2}^n) \\
- k(k + 2)(-u_{i-2}^{n-k-1} + 16u_{i-1}^{n-k-1} - 30u_i^n + 16u_{i+1}^n - u_{i+2}^n) \\
+ k(k + 1)(-u_{i-2}^{n-k-2} + 16u_{i-1}^{n-k-2} - 30u_i^n + 16u_{i+1}^n - u_{i+2}^n) \right]
\]
AT schemes: numerical experiments

2nd order AT scheme in space

\[
\text{Error } \langle |E| \rangle
\]

\[
\begin{align*}
\text{Grid resolution } N \quad & \quad \text{Error} \\
p_0 = 0.3 \quad & \quad 10^{-2} \\
p_0 = 0.6 \quad & \quad 10^{-3} \\
p_0 = 1.0 \quad & \quad 10^{-4}
\end{align*}
\]

4th order AT scheme in time

\[
\text{Grid resolution } N \quad \text{Error} \langle |E| \rangle
\]

\[
\begin{align*}
p_0 = 0.0 \quad & \quad 10^{-4} \\
p_0 = 0.3 \quad & \quad 10^{-5} \\
p_0 = 0.6 \quad & \quad 10^{-6} \\
p_0 = 1.0 \quad & \quad 10^{-7}
\end{align*}
\]
Requirements:

- “Ghost” cells: value should be either old or new value
- Need timestamp information
- Error control knob: $\langle E \rangle \propto \tilde{k}$
 - Enforce total/partial synchronization when $k = L$

Can in principle be done with e.g. MPI

- Two-sided: Isend/Irecv/Test
- One-sided: Get/Get/Accumulate (fences, locks, ...)
 - Difficult to generalize: 1D/2D/3D, different schemes or stencils, different control knobs, etc

Programming very challenging for application users

- Need to study/experiment different schemes
- Interested in physics

Need a general framework to express asynchronous schemes
Algorithmic skeletons

- portable and implementation-independent specification of algorithms
- polymorphic higher-order functions

 \[
 \text{map } f[a_1, a_2, \ldots, a_n] = [f(a_1), f(a_2), \ldots, f(a_n)]
 \]

- inherently composable
- allow formal analysis and transformations

STAPL translates them to data flow graphs\(^1\)
- suitable representation for parallel execution
- composition
 - point-to-point dependencies
 - no global synchronizations

\(^1\)Zandifar et al LCPC 2014; Zandifar et al ICS 2015
Stencil computations

- **skeleton::stencil<5>(op)**
 - each iteration can start only if previous is done
 - limits scalability

- **k iteration relaxation – skeleton::stencil<5>(op,L)**
 - each iteration can start if result from any of the previous $k \leq L$ levels is ready
 - more asynchrony

Note: k could be different on each side
Effect on realistic flows

- Need to understand propagation of perturbations in high-Reynolds number turbulence
 - Velocity, velocity gradients, pressure
 - Different regimes (sub/supersonic, strong shear): PDE changes type (propagation properties)
- Preliminary results: simulated delays at a given instant, then continue simulations

Relative error between delayed and non-delayed simulation

Larger error on vortical structures – how to avoid/minimize it?
Asynchronous schemes as a dynamical system

Approach: Switched System Framework

\[U^{(n+1)} = A_{\sigma_k} U^{(n)}, \quad \sigma_n \in \{1, 2, \ldots, m\} \]

\[\pi = \{\pi_1, \pi_2, \ldots, \pi_m\}: \text{switching probability for each } A_{\sigma_n} \]

\[m = L^{2(P-2)}: \text{total number of switching modes} \]

- Monte Carlo simulations: intractable!
 - E.g.: \(L = 2, P = 100 \) leads to \(m \sim O(10^{60}) \) matrices!

- Instead, use Lyapunov theory for dynamical systems (1D)

\[||\tilde{E}^{(n)}||^2 < C \left(1 - 1/\lambda_{\max}(P_m)\right)^n \]

- Can obtain PDF/moments of error given the PDF of delays \(\tilde{k} \)

Summary and outlook

- Turbulence simulations at exascale: critical to fundamental understanding
 - Challenges in scalability with current methods

- Asynchronous schemes: feasible if we can show stability, consistency and accuracy
 - Gained significant understanding, but mainly in a mean sense
 - Can now design schemes with desired mean properties
 - Some preliminary time-dependent bounds; need to tighten them

- Complexities of asynchronous implementations: skeletons/STAPL
 - High-level interfaces for application users
 - Readily implement/change numerical schemes