
www.postersession.com

Education

Symmetric Queries as a Building Block

for Efficient Parallel Query Evaluation
Yuqing Melanie Wu

Pomona College Indiana University

Claremont, CA Bloomington, IN

It is not a second thought.

Open questions:

1. Where/how to push the concepts of parallel computing into undergraduate curriculum?

2. What are the general concepts about parallel computing that are the must-have for undergraduate CS

major?

3. What is the core/essence of the parallel computing of which different sub-areas have identified their own

focuses?

4. How can the concepts of parallel computing be specialized in target areas?

Motivating Examples Symmetric Query Languages
Many applications, especially of which data-intensive, have to deal with

sequences of sets of objects, where all objects are of the same type…

Same query, different complexity

B: Boolean

A: Aggregated value

I : Object incidence

Example applications:

Q1. parts that are supplied by at least three suppliers

Q1
B: Does there exist a part that is supplied by at least three suppliers?

Q1
A: How many parts are supplied by at least three suppliers?

Q1
I : Find all parts that are supplied by at least three suppliers.

Q2. parts that are supplied by all suppliers

Q3. a set of more than one part that is supplied by the same set of suppliers

Q4. pairs of parts such that if a supplier supplies the first one, it must supply the

second one

Q5. pairs of parts such that there is at least one supplier that supplies both

Q6. pairs of parts such that there is no supplier that supplies both

Q7. pairs of parts such that there are exactly two-hundred suppliers that supply

both

Open Questions

1. Is there any summary information or

techniques that can help speed up the

evaluation of the queries in the Q7 group,

sparing it from two hundred self-joins?

2. For the queries whose complexity is between

the group of queries in the example, to what

degree are their evaluations parallelizable?

3. If some of these queries are not naturally

parallelizable, can we find smart evaluation

techniques to compute parts of it in a parallel

manner?

Broader Questions

1. What are the languages whose queries are

naturally parallelizable?

2. How can we identify parallelizable components

in a generic query?

3. How can we evaluate a generic query efficiently

in a parallel environment?

QuineCALC
𝜑 ≔ Γ 𝑥, 𝑋 𝑋 = 𝑌 𝑋 ≠ 𝑌|𝜑1⋀𝜑2|𝜑1⋁𝜑2|¬𝜑1|∃X𝜑1

1. A restricted first-order logic
2. A generalization of symmetric n-ary Boolean functions whose arguments and values are sets.
3. All QuineCALC queries are counting-only.

SyCALC
𝜑 ≔ Γ 𝑥, 𝑋 𝑋 = 𝑌 𝑋 ≠ 𝑌|𝜑1⋀𝜑2|𝜑1⋁𝜑2 ¬𝜑1 ∃x𝜑1|∃X𝜑1

1. Extension of QuineCALC, accommodating projection and Cartesian product.
2. For every SyCALC query q, for every natural number n, there exists a symmetric relational function

𝑓𝑞,𝑛 𝑆1, … , 𝑆1 such that 𝑞 ≡𝑛 𝑓𝑞,𝑛 𝑆1, … , 𝑆1 .

NSF-XPS Workshop, Arlington, VA. June 2015

http://www.megaprint.com/
http://www.megaprint.com/

