THE UNIVERSITY OF

CHICAGO

Handling Production Run Concurrency-Bug Failures

Shan Lu

The Solution
*»*Solution 1: a reactive approach

The Problem

s*Concurrency bugs

> Replay after a failure
» Synchronization problems in multi-threaded programs Piay

o : . .
» Widely exist in production runs Solution 2: a proactive approach

> Perturb before a failure

J Multi-threaded programs are pervasive

7/
 In-house testing is ineffective “*Challenges

> Production-run failures are costly » Functionality: how to make the failure disappear?

» Performance: how to keep the overhead low?

——

—oR

Our Reactive Tool: ConAir [13] Our Proactive Tool: Al [2:34]

$ S
e
VS D
.
-~
R=
"y
Vg
o~
"
"
e

Ideas
s*Temporarily stall 1 thread at selected moments

Ideas

**Rollback & replay 1 thread at failure

> Delaying the too-fast thread » Delaying the too-fast thread

> Help recover all major types of concurrency buys —>Help recover all major types of concurrency buys

¢ . - - . . 7))
% Rollback & replay idempotent regions **Using Al invariants to identify “selected moments

» Concurrency bugs happen when a shared-variable access

» Requiring no checkpoints ,
i follows an abnormal remote predecessor

- Negligible run-time overhead
518 » Stalling before i so that the invariant is not violated

Examples Examples
Thread 1 Thread 2 N 4 Thread 1 Thread 2 m A el Tha 2 wh
i i sta wnen
It (proc)i /TA~, broc = NULL; //B replay Thd 1 when It (proc)i /1A~ broc = NULL /B
tmp=*proc; //C . tmp=*proc; //C B is abnormally
P=Prog; failure occurs @ C P="Prog;
} } preceded by A
MySQL - . Mysal Y,
Thread 1 Thread 2 I 4 Thread 1 Thread 2 I
/*mThd is unintialized*/ /*mThd is unintialized*/ stall Thd 1 when

replay Thd 1 when
failure occurs @ A

A is abnormally

state=mThd-—>s;//A preceded by ¢

_state=mThd—2>s;//A

mThd = CreateThd(); //B

. Mysal Y, _

mThd = CreateThd(); //B
MySQl),

Experimental Results

s*Performance
> <0.2% run-time overhead

Experimental Results

*»*Performance

» < 1% run-time overhead for desktop/server programs

. . . » >10X slowdown for scientific parallel programs
L X 4

«* Functionality . , ,

**Functionality

» Works for 16 out of 26 real-world concurrency bugs

; e . » Works for 35 out of 35 real-world concurrency bugs
» Caveats: assuming output correctness specifications

» Caveats: requires training

Summary: ConAir VS. Al

. coAXr A

Performance Great Poor when there are intensive shared-memory accesses

Poor when failure thread is too slow

L Not clear for more complicated concurrency bugs
Poor when error propagation is long

Functionality

Future: ConAir + Al?

References:

1]. W. Zhang, M. Kruijf, A. Li, S. Lu, and K. Sankaralingam. ConAir: Featherweight Concurrency Bug Recovery Via Single-Threaded Idempotent Execution. In ASPLOS, 2013.

]. M. Zhang, Y. Wu, S. Lu, S. Qj, J. Ren, and W. Zheng. Al: A Lightweight System for Tolerating Concurrency Bugs. In FSE, 2014 (ACM SIGSOFT Distinguished Paper Award).

. D. Deng, G. Jin, M. Kruijf, A. Li, et. al. Fixing, Preventing, and Recovering from Concurrency Bugs. In Science China Information Sciences, May 2015.

. M. Zhang, Y. Wu, S. Lu, S. Qj, J. Ren, and W. Zheng. Al: A Lightweight System for Detecting and Tolerating Concurrency Bugs. Invited submission to Transaction of Soft. Eng.

For NSF XPS Workshop 2015

BwN R

