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• Key question in approximation systems – how to approximate 

(and how aggressively)? 

• The answer depends on the input 

• Example – gamma correction + tiling approx. on 800 images, 

target output quality = 90% 
 

The Case for Input Responsiveness 

• Goal – make a decision about how aggressively to 

approximate for individual inputs 

• Our approach 

1. Create canary input, a small version of full input that 

possesses key properties of full input 

 

 

 

 

2. Quickly test approximation options on canary, choose the 

most effective option 

3. Apply most effective approximation to the full input 

 

ure 3(b) shows a histogram of the speedups achieved
on the set of 800 inputs. The speedups vary signif-
icant ly, ranging from 3.5⇥ to 410⇥ (average is 61⇥)
due to the fact that a wide range of approximat ions
are chosen. As shown in Figure 3(c), across 800 in-
puts, 42 unique approximat ion methods are chosen,
with no single approximat ion method being used on
more than 17% of the inputs. That is, a wide range of
approximat ion methods are used to obtain the max-
imally e↵ect ive approximat ion across the set of in-
puts and no single approximat ion is dominant . The
key to taking advantage of this opportunity is to cus-
tomize the approximation for each input on an indi-
vidual basis, and to develop that customized approxi-
mation quickly.

3. OVERVIEW OF IRA
Thegoal of Input ResponsiveApproximat ion (IRA) is,
given a computat ional problem, a range of approxima-
t ion opt ions, and an input to the problem, to rapidly
choose the approximat ion that is most e↵ect ive for
that input . Our approach to achieving this goal is
shown in Figure 4 and takes the following steps:
1. Canar y I nput – first , IRA samples down the full
problem input to produce a canary input, a smaller
representat ion of the input (Sect ion 4.1). Thecreat ion
of the canary is guided by hypothesis test ing, a robust
stat ist ical framework used to ensure that the result ing
canary is large enough to be representat ive of the full
input , sharing key propert ies with the full input , while
being no larger than necessary.
2. Cust om ize t he A ppr ox im at ion – next , exact
and approximate solut ions are computed using the ca-
nary input to select the most e↵ect ive from among the
available approximat ion opt ions, including select ing
the code regions to approximate and how to approxi-
mate within those regions (Sect ion 4.2). Because the
canary input can be orders of magnitude smaller than
the full input , IRA is able to rapidly forecast how
numerous approximat ion opt ions fare on a part icular
input by running the canary input with each of those
approximat ion opt ions. Unlike prior work, IRA pre-
dicts the accuracy and performance of approximat ions
on each input on demand and ex ante, allowing it to
find and use a customized, e↵ect ive approximat ion for
every input .
3. Com put e A ppr ox im at e Solut ion – last , the cus-
tomized approximat ion method deemed e↵ect ive for
the canary is run on the full input to produce an
approximate solut ion that is of acceptable accuracy
(Sect ion 4.3). As we show later, these steps leading to
an approximate solut ion are ext remely e↵ect ive, lead-
ing to large performance improvements with minimal
accuracy losses, significant ly outperforming ideal ver-
sions of prior techniques.

4. IRA DESIGN AND IMPLEMENTATION
This sect ion provides a detailed descript ion of how
IRA develops a customized approximat ion for each
problem input . Webegin by detailing theprocessused
to create the canary input , a small representat ion of
the full problem input that is used to guide a dynamic
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search for a customized, e↵ect ive approximat ion.

4.1 Canary Input
Creat ing a canary input that exhibits the propert ies
of the full input has three main challenges. First , in
determining the similarity of the canary and the full
input , we must use a definit ion of similarity that re-
flects meaningful propert ies of the inputs. Second,
we must be able to choose the canary in a way that
is both computat ionally inexpensive and ensures that
the definit ion of similarity is sat isfied. Third, we want
to choose a canary that is much smaller than the full
input , as this will be a large determinant of the t ime
spent employing the canary to test various approxi-
mat ions.

To determine the similarity between inputs, we ex-
plore four di↵erent met rics of similarity. These four
met rics are designed to span a range of di↵erent no-
t ions of what it means for inputs to besimilar, ranging
from the very simple not ion of ensuring that the val-
ues in the canary are close, on average, with the values
in the full input to complex met rics that ensure the
similarity of local propert ies within small regions of
the input . We discuss these metrics in detail in Sec-
t ion 4.1.2.

To overcome the second challenge, we ensure low
overhead in the canary creat ion process by employing
stat ist ical sampling in the analysis of each potent ial
canary input , thus allowing us to compute metrics on
just a small subset of the canary input when analyz-
ing its similarity to the full input . To ensure that the
definit ion of similarity is sat isfied in a chosen canary,
weuse a carefully designed algorithm based on robust ,
automated hypothesis tests that minimize the likeli-
hood of making an incorrect decision about each ca-
nary. In part icular, we take special care to design our
approach to avoid both false negatives – incorrect ly
finding dissimilarity – and false positives – incorrect ly
finding similarity. These are also known as Type I and
Type I I errors, respect ively. The avoidance of false
posit ives ensures that the canary we select is highly
likely to be similar to the full input .

Likewise, avoiding false negat ives is key to ensuring
that the chosen canary is no larger than needed. If we
mistakenly rejected a small canary that was actually
similar to the full input in favor of a larger canary,
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Taking Advantage of Differing Inputs  

• Software-based, can be used on commodity systems today 

• Far larger speedups than state-of-art software systems 

(average – 10.8x IRA, 2.5x SAGE) 

 

Large Speedup, Small Quality Loss 
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• On average, 2x reduction in mean relative error  

Quality Vs. Recomputations (inversek2j)  

• Avoid large errors in output elements 

• User tunable accuracy and efficiency 
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Lightweight Online Quality Control 

Rumba System 

Quality control made practical by:  

• Predictive detection 

• Continuous monitoring 

• Tunable with quality feedback 

• Attack key challenges to make approximate 

computing pervasive 
 What to approximate? 

 How to approximate? 

 How to detect approximation error? 

 How to manage execution and the user experience? 

 

• Hardware vs. software approximation methods 

 

• Demonstrate with real-world prototypes 
 


