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Background and Overview

* Computations on extremely large datasets are
increasingly important to progress in a wide
variety of commercial and scientific domains

e Systems such as MapReduce and GraphLab make
the ability to harness distributed compute power

more readily available

e Scalable parallelism requires runtime knowledge
of application data structures and access patterns

* Our goal is to develop performance portable
abstractions that allow the runtime system to
infer application access patterns and localities

Photo: J. Adam Fenster

Locality-Aware API

e Algorithmic abstractions that capture access
locality

* |nitial target application subclass: tree-based
data representation

 Computational biology

* Genome assembly
* Molecular dynamics

Proposed API Extensions for Trees
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Example:
Quad-Tree Representation
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* Runtime is responsible for the distributed
representation and storage of the tree
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Local tree of P2 stored as postorder array
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Deterministic Parallel Ruby

Split-merge parallelism

Automatic checking of branch independence
TARDIS race detector

Language-level (semantic) conflict detection

Dynamic Enforcement of Determinism in a
Parallel Scripting Language [PLDI 2014]
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Research Highlights

* Deterministic Parallel Ruby provides scalable

parallelism for scripting languages

* Sharing-Aware Mapping provides users and

application developers the ability to harness
scalable parallelism in a topology-oblivious
manner

Sharing-Aware Mapping (SAM)

* Reality: Programmers and users must be aware
of hardware topology and non-uniform sharing

* Photo courtesy crunchgear.com

Need better support to improve
programmer and user productivity
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 SAM uses low-cost hardware performance counters
commonly available on modern processors to identify
and separate data and resource sharing

* Results demonstrate that adaptive online sharing-aware
mapping at the scheduler level effectively localizes
traffic due to sharing and minimizes resource contention

for improved fairness
Data Sharing or Resource Contention:

Toward Performance Transparency on
Multicore Systems [Usenix ATC 2015]

Average speedup =1.23
Min speedup = 0.96
Max speedup =1.72
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