Collaborative Research:XPS:CLCCA:

Performance Portable Abstractions for Large-Scale Irregular Computations

Sandhya Dwarkadas and Michael L. Scott
University of Rochester

Background and Overview

* Computations on extremely large datasets are
increasingly important to progress in a wide
variety of commercial and scientific domains

e Systems such as MapReduce and GraphLab make
the ability to harness distributed compute power

more readily available

e Scalable parallelism requires runtime knowledge
of application data structures and access patterns

* Our goal is to develop performance portable
abstractions that allow the runtime system to
infer application access patterns and localities

Photo: J. Adam Fenster

Locality-Aware API

e Algorithmic abstractions that capture access
locality

* |nitial target application subclass: tree-based
data representation

 Computational biology

* Genome assembly
* Molecular dynamics

Proposed API Extensions for Trees

(1)
(2)

e

/

generate(u) — (CS(u),DEPENDENCY)
v € CS(u)

A
/ 1\

/ ””f/},.r/%xk 11
e

combine(u,v) — u/,

Example:
Quad-Tree Representation

& 00 A7 100 T L T L S
¢/ 1102 11~ 7 11100 227 11101~

ST TTIT
10000 "7 10001 ,--'”;” |[:-|u-t_|'_,,f_;,'$"1r|1r|1 e

e] %F .
1 1Rk 1k

* Runtime is responsible for the distributed
representation and storage of the tree

o
/g\ N
FAe S

|
Local tree of P1 stored as postorder array 1
|

Local tree of P2 stored as postorder array

P1:12A34§IB P2: 56 C7 8............ R

\

Out of order nodes

Deterministic Parallel Ruby

Split-merge parallelism

Automatic checking of branch independence
TARDIS race detector

Language-level (semantic) conflict detection

Dynamic Enforcement of Determinism in a
Parallel Scripting Language [PLDI 2014]

p_fork _ |
Tt »
. send
recelve
send___ |
— | |
receive
|- - exit
. . <«
p_join v
Multi-process t fork .
T -
X «—Write
read <
write
\Ly
T read
___ _ . exit
t join < v

Fork-join

Split-merge

Srinivas Aluru

Georgia Institute of Technology

Research Highlights

* Deterministic Parallel Ruby provides scalable

parallelism for scripting languages

* Sharing-Aware Mapping provides users and

application developers the ability to harness
scalable parallelism in a topology-oblivious
manner

Sharing-Aware Mapping (SAM)

* Reality: Programmers and users must be aware
of hardware topology and non-uniform sharing

* Photo courtesy crunchgear.com

Need better support to improve
programmer and user productivity

(&~

 SAM uses low-cost hardware performance counters
commonly available on modern processors to identify
and separate data and resource sharing

* Results demonstrate that adaptive online sharing-aware
mapping at the scheduler level effectively localizes
traffic due to sharing and minimizes resource contention

for improved fairness
Data Sharing or Resource Contention:

Toward Performance Transparency on
Multicore Systems [Usenix ATC 2015]

Average speedup =1.23
Min speedup = 0.96
Max speedup =1.72

Speedup

%%%%%
N N NY ,b\Qe

