Compiler & Runtime Techniques for

Adaptive Stream Processing

Ryan Newton, Joel Svensson, Trevor McDonell,
Michael Vollmer, Omer Sinan Agacan, Buddhika Chamith

{rrnewton, joelsven, mcdonelt, vollmerm, oagacan, budkahaw}@indiana.edu

Introduction

Distributed stream processing requires a combination
of technologies to monitor workloads and map them
onto the local resources of worker machines. Here
we highlight three sub-projects that address distinct
aspects of this problem:

* Compile: JIT compiling dataflow graphs for
available parallel architectures (Accelerate)

* Communicate: Sending irregular data efficiently
between nodes (Compact Normal Form)

* Monitor: Profiling native-code programs based on
binary self-modification and cross-modification
(Ubiprof)

Accelerate

In a distributed execution plan, a subgraph of a
stream dataflow graph must map onto the hardware
of a worker node and achieve throughput. Our
approach 1s a DSL JIT compiler called Accelerate.

* Accelerate [6] takes a graph of data-
transformations and generates CUDA or LLVM
code to run on CPU or GPU.

* Accelerate can launch concurrent GPU kernels on
each new 1nput (stream element) that arrives

* Accelerate 1s a (partially) formally verified
compiler [4]

Currently, we apply Accelerate to streaming problems

in the video domain:
Canny Edge Detection

1000 ¢ | : |
100 | _
_ :
E
()
g 10 | —
|_
c
=]
o
e Accelerate (whole program) =——— 3
Accelerate (just GPU kernels) =—g— 1
OpenCV (CPU) —m— -
I OpenCV (GPU) —t—
0.1 ' ' I I |
64k 256k M 4M 16M

Image Size (total pixels)

Via 1t’s LLVM backend, Accelerate can run data-
processing algorithms on the CPU too

MD5 hash

55 T T
50
45
40
35
30
25
20
15
10

5

0 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

Threads
Ongoing work 1s improving Accelerate’s streaming

[7]. At IU, we are adding the ability to dynamically
handle multiple devices, such as two GPUs [2], and
add auto-tuning to the high-level compiler [3].

I I I I I I I
Hashcat —¢—
Accelerate (LLVM-CPU) —x—

Speedup vs. Hashcat @ 1 Thread

Compact Normal Form (CNF)

Distributed stream processing systems (like Twitter
Storm) must route streams over network links. Data
(de)serialization consumes significant time,
especially for irregular and pointer-based data
structures.

For immutable data in high-level languages, we
explore an alternate heap representation: Compact
Normal Form [1]. CNF allows regions of the heap to
directly be:

* sent over the network (including RDMA)
* stored to disk
* skipped over by GC as one object

We have implemented CNF for the Glasgow Haskell
Compiler (GHC). Our total speedup for sending,
¢.g., large binary trees through the network with CNF
can exceed 16X:

N - - bintree (Binary)
(z) 16 - bintree (Java)
Q pointtree (Binary)
2 8- pointtree (Java)
g ,
9 /
c 47 /
2 /
@) P
© _7
2 21 Pt
o e
(7)) JRe
S 1 - -
O === \ //
L(E - -\\ //
1/2 1 oo
| | | | |
20 25 210 215 220

Number of leaves

Likewise, reading twitter data from disk is faster
when 1t can be mmap’d directly into GHC’s heap,
whether reading one record or all of them:

100 g

o)

o

0

© :

c

o =

0

Q -

& .

£ T

v =

IS .

] -

c

o =

o L - Note: “Aeson’ is a

S E X ol X Aeson/one =—f4— High-performance
i ’,“/ RV Aeson/all = €- - JSON-parsing library
i & e X Compact/one ===+

0.001 & XK Compact/all —-A--

Cavsad . cd—l.lLa l—..a e aaanl a1 ettraal.

1 10 100 1000
Megabytes of JSON data

Finally, if inserting frequently into a large dat
structure, i1t being compact can actually help
performance:

w
(Oa]

E , A
E Compact/ListVector —+— et

@® 3E Compact/List --©-- i

S i Normal Haskell/ListVector - L

025 £ Normal Haskell/List —A—g-" -~

no Java/List ==E-—- -

£ 2F)

G) .E- _/s"/": ;;;

€15 ¢ P &

- b oo

- X7

O 1E o

ok S £

%)05 ‘E:_ ,%'x —E’.. ____,_,_...------""""'Té

com®®®

(RGN RRRR RN AR RN RE A AR ARG E RN RRRRURRNA AR RRRNNA AN RRRRA AR RNNRARY FRERRRRENY

0 5 10 15 20 25 30 35 40 45 50

Total number of insertions (in millions)

We are combining CNF with the HPX runtime
(hpx.crest.iu.edu) for distributed execution.

UbiProf

Profiling streaming dataflow graphs for scheduling
purposes has different requirements than traditional
time profiling.

measure latency
| |

Processing
step
L |

measure frequency,
size in bytes

Processing
step

Capturing processing latency and data size requires
sampling intervals rather than instants, and injecting
custom code to compute data structure sizes. Thus
dynamic probes, such as in DTrace, are appropriate.

Yet overheads for these probes are high. Thus we
are exploring new approaches with an order of
magnitude improvement in probe cost, and a probing
infrastructure that 1s:

* Intra-process, user space
e Multicore scalable
* Free when not engaged

We have also used these probes to build a general
profiling tool, UbiProf [5]. UbiProf dynamically
activates and deactivates probes to stay under a given
allowable overhed, using a backoff approach for hot
functions to disable their own probes.

UbiProf controls a backoff threshold and the
frequency with which deactivated probes are
reactivated (sampling epoch).

Overhead Perl-5.8.7 Backoff
thresh:

=e-100000

@- 10000
\ == 1000
== 100
—— —O0— —0

—_

S Uu o N o WO

Overhead

2
——0—= —0
* =0

56789 2 3 4 56789 2 3 4 56789
100 1000 10k

Sampling epoch

Here, even on a workload with 9531 different
functions and 18M calls/sec (Perl spec benchmark),
it 1s possible to take up to 1000 samples per function
per 100ms sampling epoch, for less than 2%
overhead.

One consequence of capturing function start/end
intervals 1s that UbiProf can flag functions with
multimodal cost, which gprof cannot.

gzip | grep | bzip | perl | h264
severe MM 1 3 6 67 42
called funs 36 66 60 | 415 | 317
gprof missed 0 0 0 42 42

Further information

PI Website: www.cs.indiana.edu/~rrnewton

Github: github.com/iu-parfunc

oithub.com/rrnewton
CREST: crest.iu.edu
PL@IU: lambda.soic.indiana.edu

@, @, @,

Paper links for phones

[4] Type-safe Runtime Code Generation:

[1] Efficient Communication and Collection Accelerate to LLVM, 1n submission.
with Compact Normal Forms. ICFP’15 tinyurl.com/acc-1lvm
tinyurl.com/compactnf [5] Ubiprof: Towards Always-On Profiling of
[2] Converting Data-Parallelism to Task- Native code, wprking draft.
Parallelism by Rewrites, in submission. tinyurl.com/ubiprof

tinyurl.com/acc-multidev

[3] Meta-Programming and Auto-Tuning in the [6] Optimising Purely Functional GPU

Search for High Perf. GPU Code, 1n sub. Programs, tinyurl.com/acc-optim
[7] Functional Array Streams, Madsen et al.

FHPC 2015, tinyurl.com/acc-streaming

tinyurl.com/autotune-gpu

Acknowledgments

This work 1s supported by NSF XPS award #1337242,
“XPS: DSD: Adaptive Stream-Processing Compilers for a Messy World”

ll[INDIANA UNIVERSITY

