
Introduc)on	
Distributed stream processing requires a combination
of technologies to monitor workloads and map them
onto the local resources of worker machines. Here
we highlight three sub-projects that address distinct
aspects of this problem:

•  Compile: JIT compiling dataflow graphs for

available parallel architectures (Accelerate)

•  Communicate: Sending irregular data efficiently
between nodes (Compact Normal Form)

•  Monitor: Profiling native-code programs based on
binary self-modification and cross-modification
(Ubiprof)

Acknowledgments	

This work is supported by NSF XPS award #1337242,
“XPS: DSD: Adaptive Stream-Processing Compilers for a Messy World”

Accelerate	
In a distributed execution plan, a subgraph of a
stream dataflow graph must map onto the hardware
of a worker node and achieve throughput. Our
approach is a DSL JIT compiler called Accelerate.

•  Accelerate [6] takes a graph of data-

transformations and generates CUDA or LLVM
code to run on CPU or GPU.

•  Accelerate can launch concurrent GPU kernels on
each new input (stream element) that arrives

•  Accelerate is a (partially) formally verified
compiler [4]

Currently, we apply Accelerate to streaming problems
in the video domain:

Via it’s LLVM backend, Accelerate can run data-
processing algorithms on the CPU too

Ongoing work is improving Accelerate’s streaming
[7]. At IU, we are adding the ability to dynamically
handle multiple devices, such as two GPUs [2], and
add auto-tuning to the high-level compiler [3].

Ryan	 Newton,	 Joel	 Svensson,	 Trevor	 McDonell,	 	
Michael	 Vollmer,	 Ömer	 Sinan	 Ağacan,	 Buddhika	 Chamith	

{rrnewton,	 joelsven,	 mcdonelt,	 vollmerm,	 oagacan,	 budkahaw}@indiana.edu	

Paper	 links	 for	 phones	
[1] Efficient Communication and Collection

with Compact Normal Forms. ICFP’15
tinyurl.com/compactnf

[2] Converting Data-Parallelism to Task-
Parallelism by Rewrites, in submission.
tinyurl.com/acc-multidev

[3] Meta-Programming and Auto-Tuning in the
Search for High Perf. GPU Code, in sub.
tinyurl.com/autotune-gpu

[4] Type-safe Runtime Code Generation:

Accelerate to LLVM, in submission.
tinyurl.com/acc-llvm

[5] Ubiprof: Towards Always-On Profiling of
Native code, working draft.
tinyurl.com/ubiprof

[6] Optimising Purely Functional GPU

Programs, tinyurl.com/acc-optim
[7] Functional Array Streams, Madsen et al.

FHPC 2015, tinyurl.com/acc-streaming

Further	 informa)on	

PI Website: www.cs.indiana.edu/~rrnewton
Github: github.com/iu-parfunc
 github.com/rrnewton
CREST: crest.iu.edu
PL@IU: lambda.soic.indiana.edu

UbiProf
Profiling streaming dataflow graphs for scheduling
purposes has different requirements than traditional
time profiling.

Capturing processing latency and data size requires
sampling intervals rather than instants, and injecting
custom code to compute data structure sizes. Thus
dynamic probes, such as in DTrace, are appropriate.

 Yet overheads for these probes are high. Thus we
are exploring new approaches with an order of
magnitude improvement in probe cost, and a probing
infrastructure that is:

•  Intra-process, user space
•  Multicore scalable
•  Free when not engaged

We have also used these probes to build a general
profiling tool, UbiProf [5]. UbiProf dynamically
activates and deactivates probes to stay under a given
allowable overhed, using a backoff approach for hot
functions to disable their own probes.

 UbiProf controls a backoff threshold and the
frequency with which deactivated probes are
reactivated (sampling epoch).

Here, even on a workload with 9531 different
functions and 18M calls/sec (Perl spec benchmark),
it is possible to take up to 1000 samples per function
per 100ms sampling epoch, for less than 2%
overhead.

 One consequence of capturing function start/end
intervals is that UbiProf can flag functions with
multimodal cost, which gprof cannot.

gzip grep bzip h264
accurate 37 26 32 41
within 10% 52 39 43 60
within 50% 87 70 59 83
within 100% 88 77 63 91
Exceeding 100% 12 23 34 9

Figure 11. What percentage of UbiProf’s reported per-
function min durations were accurate with respect to
groundtruth.

relative benefits of each and measure how well each tool can
(indirectly) approximate the other.

5.3.1 UbiProf accuracy vs groundtruth
For each function f with m dynamic invocations over the
process lifetime, f0 . . . fm, we define groundtruth for each
f
i

as a leaf measurement of f
i

. In fact, to account for nonde-
terminism in process execution we want J measurements of
each f

i

, thus f j

i

. To acquire groundtruth data we run UbiProf
in a special mode where it instruments only one function,
guaranteeing that function will receive leaf samples7 We re-
peat this process J times to get all samples. Thus the we say
that the minumum time for function f is somewhere in the
range [Min

j

(Min
i

(f j

i

)), Max
j

(Min
i

(f j

i

))], that is, some-
where in the range of observed minimum times on each of J
trials.

In this analysis, we ask “how accurate is UbiProf’s re-
ported minimum execution time for f?”. Specifically, we
check if it falls into the range of minimums observed over
the J groundtruth trials, or, if it is outside of that range, we
measure the percentage error in reported duration.

Note that if the true minimum cost execution was f
min

,
then UbiProf’s reported minimum can be inaccurate for two
reasons, either (1) the f

min

invocation was sampled, but
was a non-leaf sample and thus was perturbed by the noise
described in Section 4.1, or (2) f ’s probe backed off and
the f

min

invocation was never sampled (resulting in some
other f

oth

where oth 6= min reported as minimum instead).
Table 11

5.3.2 UbiProf vs GProf
Cold functions missed by sampling GProf can estimate
average duration of a function based on how frequently it
appears in samples plus the total process cputime. However,
for functions that are short and not extremely hot, they could
be undersampled or even not sampled at all, leading us to
conclude the have “zero duration”. In fact, a function can
have duration, p � ✏, approaching the sampling period, and
still be reported as zero cost! By default, gprof on Linux
uses a sampling period of 0.01 seconds. This means a func-
tion could be up to 30 million cycles and reported as free

7 Unless it is a recursive function. We perform this analysis only for non-
recursive functions currently, but recursive functions could be handled, if
desired, by sampling only at a given stack depth on each run.

gzip grep bzip perl h264
severe MM 1 3 6 67 42
called funs 36 66 60 415 317
gprof missed 0 0 0 42 42

Figure 12. Counts of how many functions in each applica-
tion were a bad fit for gprof due to multi-modal (MM) ex-
ecution time, or were missed by gprof entirely, but sampled
by UbiProf.

(but not with high probability). Figure 12 shows many func-
tions were missed by gprof entirely, or were more than 10%
off in average duration. Likewise, it counts how many func-
tions were multi-modal (based on the UbiProf-reported his-
togram), making average duration a bad metric.

6. Related Work & Alternative Approaches
Profiling as an end can be accomplished by various means.
Here we overview some of the alternatives. For a profiling
capability that can be conditionally activated at runtime, we
either need (1) multiple versions of the compiled code and
the ability to redirect function call sites (for example as when
a language VM decides to recompile a function at a different
optimize level), or (2) a single version of the code with latent
probes, such as the approach we presented in the UbiProf
system.

Runtime branches The simplest way to achieve toggleable
latent probes is to generate conditionals: “if(flag) probe();”.
Indeed, any of the above instrumentation or compiler tech-
niques could add these conditional probes. Further, the cost
of a correctly predicted branch on modern architectures is
low. However, if we wish to annotate the program at a fine
grain (e.g., every function or basic block), these overheads
can still be prohibitive. Even when all probes are deactivated,
we incur an additional memory load for each probe-specific
flag, as well as a bloated instruction stream. It is for that
reason that we have based UbiProf on dynamic binary mod-
ification, rather than simply on conditionally executed code
paths.

6.1 Patching with interrupt instructions
Patching-based tools have different means to interrupt exe-
cution at that point. In this paper, we have presented an ap-
proach based on inserting JMP instructions, but this is not
typical. On x86, the interrupt instruction (INT 3) is typically
used for this purpose—it requires only a single byte (0xCC),
thus displacing only a single original instruction. Indeed, this
is also the technique used by debuggers, and the infrastruc-
ture for cross process snooping via interrupts and the ptrace

system call is quite mature. Further, while software inter-
rupts are usually used (with ptrace) to instrument a differ-
ent process, they can also be used for self-instrumentation,
which is most appropriate for always-on profiling.

There are two major disadvantages, however, of interrupt
instructions:

10

Processing
step

Processing
step

measure latency

measure frequency,
size in bytes

Backoff  
thresh:

Compact	 Normal	 Form	 (CNF)	
Distributed stream processing systems (like Twitter
Storm) must route streams over network links. Data
(de)serialization consumes significant time,
especially for irregular and pointer-based data
structures.

 For immutable data in high-level languages, we
explore an alternate heap representation: Compact
Normal Form [1]. CNF allows regions of the heap to
directly be:

•  sent over the network (including RDMA)
•  stored to disk
•  skipped over by GC as one object

We have implemented CNF for the Glasgow Haskell
Compiler (GHC). Our total speedup for sending,
e.g., large binary trees through the network with CNF
can exceed 16X:

Likewise, reading twitter data from disk is faster
when it can be mmap’d directly into GHC’s heap,
whether reading one record or all of them:

Finally, if inserting frequently into a large data
structure, it being compact can actually help
performance:

We are combining CNF with the HPX runtime
(hpx.crest.iu.edu) for distributed execution.

1/2

1

2

4

8

16

32

20 25 210 215 220

Number of leaves

Fa
ct

or
 s

lo
w

 d
ow

n
re

la
tiv

e
to

 C
N

F

Java
Cereal
Binary
Compact/Share

Figure 3: Relative improvement for serializing a bintree of size
2N with CNFs versus other methods. Both x and y scales are
logarithmic; bigger is better for CNF (and worse for the serializer
being compared.) Compact/Share refers to the implementation of
compact regions which preserves internal sharing.

• bintree is a binary tree with a single unboxed integer in leaves.
This variant has high pointer/total size ratio, and thus represents
a worst case scenario for transmitting compact normal forms.

• pointtree is a binary tree with four unboxed integers in leaves,
increasing the data density.

Additionally, we also analyzed a third data type, composed of
URLs, hashtags and user IDs for all posts in Twitter in the month
of November 2012 [21, 22].

Our experiments were done on a 16-node Dell PowerEdge
R720 cluster. Each node is equipped with two 2.6GHz Intel Xeon
E5-2670 processors with 8-cores each (16 cores in total), and
32GB memory each. For the network benchmarks over sockets,
we used the 10G Ethernet network connected to a Dell PowerCon-
nect 8024F switch. Nodes run Ubuntu Linux 12.04.5 with kernel
version 3.2.0.

5.1 Serialization and deserialization costs
Our first evaluation compares the cost of serializing and deserial-
izing data into a region, as well as the resulting space usage of the
serialized versions. Note that in the case of CNFs, deserialization
takes zero time, since data in a CNF can be used directly.

In Figure 3, we see a plot comparing serialization times for bi-
nary trees which store an integer at each node. We can see that at
low tree sizes, constant factors dominate the creation of compact
normal forms; however, at larger sizes copying is an order of mag-
nitude faster than serializing. The line for Compact/Share, which
refers to the implementation of compact which uses a hash table
to preserve internal sharing, demonstrates the overhead of using a
hash table to preserve out-of-line sharing. The graph for pointtree
was comparable, and for Twitter the serialization overhead was
consistently ⇥11 for binary and between ⇥9 and ⇥18 for Java.

5.2 Memory overhead
In Table 1, we report the sizes of the various serialized representa-
tions of large versions of our data types; these ratios are represen-
tative of the asymptotic difference.

We see that in the worst case, the native in-memory represen-
tation can represent a ⇥4 space blow-up. This is because a seri-

Size Compact Binary Java
223 leaves 0.322 s 6.929 s 12.72 s
220 leaves 38.18 ms 0.837 s 1.222 s
217 leaves 4.460 ms 104.1 ms 109 ms

Table 1: Median latency for serialization with CNFs versus serial-
ization with Haskell binary and Java, for the bintree data structure.

Method Type Value Size MBytes Ratio
Compact bintree 223 leaves 320 1.00
Binary 80 0.25
Cereal 80 0.25
Java 160 0.50

Compact pointtree 223 leaves 512.01 1.00
Binary 272 0.53
Cereal 272 0.53
Java 400 0.78

Compact twitter 1024MB 3527.97 1.00
Binary 897.25 0.25
Cereal 897.25 0.25
Java 978.15 0.28

Table 2: Serialized sizes of the selected datatypes using different
methods.

1/2

1

2

4

8

16

20 25 210 215 220

Number of leaves

Fa
ct

or
 s

lo
w

 d
ow

n
re

la
tiv

e
to

 C
N

F

bintree (Binary)
bintree (Java)
pointtree (Binary)
pointtree (Java)

Figure 4: Relative improvement for median end-to-end latency for
socket communication with CNFs versus serialization by Haskell
binary and Java, for two different data structures bintree and point-
tree. Both x and y scales are logarithmic; bigger is better for CNF
(and worse for the serializer being compared.) At small sizes, con-
stant factors of CNFs dominate.

alization usually elides pointers by inlining data into the stream;
furthermore tags for values are encoded in bytes rather than words.
However, as the raw data increases, our ratios do get better. Inter-
estingly, the Twitter data achieves a relatively poor ratio: this is in
part because most of the strings in this data are quite small.

The difference in memory size sets the stage for the next set of
experiments on network transfer latency.

7 2015/5/30

Type Size Compact Binary Java
bintree 223 leaves 3.180 s 18.18 s 9.595 s

220 leaves 382.4 ms 1.028 s 837 ms
217 leaves 59.93 ms 109.1 ms 90 ms

pointtree 223 leaves 4.978 s 136.1 s 15.71 s
220 leaves 624.0 ms 4.181 s 1.461 s
217 leaves 81.31 ms 354.0 ms 141 ms

Table 3: Median end-to-end latency for socket communication with
CNFs versus serialization by Haskell binary and Java, for the dif-
ferent data structures bintree and pointtree.

5.3 Heap-to-Heap Network Transfer
Given that the size of data to be transmitted increases, the real ques-
tion is whether or not the end-to-end performance of transmitting a
heap object from one heap to another is improved by use of a com-
pact normal form. With a fast network, we expect to have some
slack: on a 1 Gbit connection, an extra 240 megabytes for a 223

size binary tree costs us an extra 2.01 seconds; if serializing takes
6.92 seconds, we can easily make up for the slack (and things are
better as more bandwidth is available).

Figure 4 shows the relative improvement for the end-to-end
latency compact normal forms achieve relative to existing solutions
for binary and Java. We see that for low tree sizes, constant factors
and the overall round trip time of the network dominate; however,
as data gets larger serialization cost dominates and our network
performance improves.

5.4 Persistence: Memory-mapped Files
While communicating messages between machines is the main use
case we’ve discussed, it’s also important to send messages through
time, rather than space, by writing them to disk. In particular, not
all on-disk storage is meant for archival purposes—sometimes it
is transient, for caching purposes or communicating data between
phases of an application. In Map-Reduce jobs, data is written out
between rounds. Or in rendering pipelines used by movie studies,
all geometry and character data is generated and written to disk
from an earlier phase of the pipeline, and then repeatedly shaded in
a later stage of the pipeline. For these use cases, storing in Compact
format directly on disk is a feasible alternative.

Here we consider a scenario where we want to process the
twitter data set discussed previously. The original data-set is stored
on-disk in JSON format, so the natural way to process it would be to
read that JSON. For this purpose, the standard approach in Haskell
would use the efficient Aeson library1. We use Data.Aeson.TH to
derive instances which parse the on-disk format to the in-memory
format shown in Figure 2.

The first scenario we consider requires reading full dataset
through memory, in particular we count how many occurrences
of the “cat” hashtag occur in the dataset, while we vary the size
of the dataset read from 1MB to 1024MB. “Aeson/all” in Figure 5
shows the result. Reading the full gigabyte takes substantial time—
55 seconds. “Compact/all” shows an alternative strategy. We cache
a Compact representation on disk, using a format where each block
is a separate file. We can then mmap these blocks directly into
RAM upon loading, and allow the OS to perform demand paging
whenever we access the data. At the full 1GB size, this approach is
21.3⇥ faster than using Aeson to load the data.2

1 https://hackage.haskell.org/package/aeson
2 We were not able to disable disk-caching on the evaluation platform
(requiring root access), but we report the median result of 5 trials for all
data points.

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

M
ed

ia
nt

im
e

in
 s

ec
on

ds
 (

lo
g)

Megabytes of JSON data

Aeson/one
Aeson/all

Compact/one
Compact/all

Figure 5: Time spent to load N megabytes of Twitter metadata
to access respectively one item at random or process all items
sequentially, when loading the JSON directly with Aeson compared
to loading a preprocessed Compact file from disk.

Finally, we also consider a sparse data access strategy. What if
we want to read a specific tweet from the middle of the data set?
This scenario measured in the “/one” variants of Figure 5. Here, we
still map the entire Compact into memory. But the OS only needs
to load data for the specific segments we access, no matter where
they fall. As a result Compact/one still increases linearly (time for
system calls to map O(N) blocks), but the gap widens substantially
between it and Aeson/one. The traditional parsing approach must
parse half of the data set to reach the middle, resulting in 26.6
seconds to access a tweet in the middle of the 1GB dataset, rather
than 0.26 seconds for Compact.

5.5 Garbage Collection Performance
One of the stated benefits of compact normal forms is that objects in
a compact region do not have to be traced. Unfortunately, we cannot
in general give an expected wall clock improvement, since the
specific benefit in an application depends on what data is converted
to live in a compact region. Additionally, not all data is suitable
for placement in a compact region: if a data structure is rapidly
changing compact regions will waste a lot of memory storing dead
data.

To give a sense of what kinds of improvements you might
see, we constructed a few synthetic benchmarks based on patterns
we’ve seen in workloads where garbage collector performance is
influential:

• p threads concurrently allocate a list of elements into a compact
region. This is a baseline showing the best-case improvement,
since no elements become dead when a new cell is consed onto
a list.

• p threads concurrently allocate a list of elements, but rooted in
a single vector. This is meant to illustrate an example where
adding a compact region could help a lot, since GHC’s existing
parallel garbage collector scales poorly when the initial roots
are not distributed across threads.

In all of these experiments, the data allocated by each thread
is kept live until the end of the test run, simulating immortal data
which is allocated but never freed.

In Figure 6 we can see the improvement in median running
time for these two experiments when the operations happen for a
list that lives in a compact region as opposed to the normal heap,

8 2015/5/30

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30 35 40 45 50

M
ed

ia
n
ti

m
e

in
 s

ec
on

d
s

Total number of insertions (in millions)

Compact/ListVector
Compact/List

 Normal Haskell/ListVector
Normal Haskell/List

Java/List

Figure 6: Median time for 16 threads to complete each N/16
insertions in 16 lists, where the lists are owned by the threads
separately or are referenced by a shared Vector (IORef [a]). We
can see that in normal Haskell times are influenced by GC pauses,
which are greatly reduced for Compacts, despite the need to copy
upfront. Java is included as a comparison, to show that Compact
can improve performance even against a well tuned fast parallel
GC.

Figure 7: Percentage of CPU time spent in the mutator (as opposed
to GC) for 16 threads to complete each N/16 insertions in 16 lists,
showing the increasing effect of tracing long lived data. Despite us-
ing a generational algorithm, the effect of major GCs is so promi-
nent in normal Haskell that only a small fraction of time is spent in
the real computation.

while in Figure 7 we can observe the influence of GC in the overall
time, which is greatly reduced in the compact case, allowing a more
efficient use of resources.

One observation from these experiments is that it is important
that the most or all of the existing compact data structure is reused
by the mutator — otherwise, the excessive copies into the compact
region of soon to be unused data become predominant in the total
cost.

Additionally, because copying into Compact counts as alloca-
tion, this double allocation factor introduces memory pressure that
triggers more garbage collections: while GC is faster in presence of
compact regions, minor collections have to trace the new temporary
objects that are allocated prior to copying into the compact region,
and that is an added cost if the objects are short lived.

One way to overcome this limitation is to copy the data into
a new compact region after a certain number of updates, just like
a copying GC would do, such that the amount of unused values
is always limited. In our current implementation this is a manual
process and relies on the programmer to know the space complexity
of the data structure being updated as well as the access patterns

from the application (possibly with the help of profiling), but future
work could explore efficient heuristics to automate this.

Conversely, it may be interesting to observe that because the
GC does not trace the internals of compacts, the GC pauses are
less dependent on the layout of the data in memory and how it was
computed, making them not only shorter but also more predictable
for environments with latency constraints.

5.6 Zero-copy Network Transfer using RDMA
High-performance computing environments—as well as large data
centers—typically are comprised of tightly-coupled machines net-
worked using low-latency, high-throughput, switched fabrics such
as Infiniband or high-speed Ethernet. Remote Direct Memory Ac-
cess (RDMA) enables a source machine to remotely access a desti-
nation machine’s memory without any active participation from the
latter. In essence, RDMA decouples data movement from synchro-
nization in communication between hosts. RDMA-enabled net-
work hardware is set up to access a remote processor’s memory
without involving the operating system on either end. This elim-
inates synchronization overheads and multiple redundant copies,
achieving the lowest possible latency for data movement.

The promise of fast, low-latency RDMA communication, how-
ever, is often thwarted by pragmatic issues such as explicit buffer
management and synchronization, and the fact that RDMA APIs
are low-level and verbose to program with. In contemporary
RDMA networking hardware, a host application is required to pin
the memory that it wants to expose for transfers. The operating sys-
tem populates page table entries (PTE) associated with this pinned
buffer such that all subsequent accesses to memory bypass the OS
(the Network Interface Card (NIC) can directly DMA to or from
the locked memory). Further, a source machine requires a handle
to the remote memory that it wants to access. Thus, there is often
a rendezvous required between peers before they can communicate
with each other.

Modern high-performance communication libraries offer sev-
eral features built on top of the raw RDMA API to ease mes-
sage passing over the network. Each peer reserves pre-pinned ring
buffers for every other peer, which are used for transferring small
messages. A peer maintains an approximate pointer into a eager
ring buffer which is used as an index into remote memory. When a
peer suspects that it might overflow the remote buffer, it reclaims
space by synchronizing with the remote peer. Large messages are
sent by sending a handle to the memory, and requesting the tar-
get to get the memory associated with the handle. In addition to
raw remote memory access (RMA), message passing libraries also
provide a RPC mechanism for invoking handlers on the transferred
remote data.

We have already discussed the interaction of CNFs with net-
work communication, and demonstrated the claimed performance
improvements in Section 5.3. Here we consider true zero-copy
transfer of heap objects between two networked machines. The two
cases that we evaluated are shown in Figures 8a and 8b.

Consider a case where a client wants to send a pointer-based
data structure to the server. With RDMA, the client needs to know
where to put the data in the server’s memory. In the approach
demonstrated in Figure 8a that we refer to as the eager (push-
based) protocol, the server sends a handle to a pinned region in its
memory per a client’s request. The client has to serialize the data
structure into a contiguous memory region if the structure is not in
CNF. The client puts into remote memory and notifies the server
of completion. All of the protocol messages are exchanged over
a control channel also implemented on top of RDMA using eager
ring buffers. Finally, the server deserializes the received structure
incurring an extra copy and the penalty of fixing up internal point-
ers if the structure is in CNF.

9 2015/5/30

Note: “Aeson” is a
High-performance
JSON-parsing library

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16 18 20

R
un

 T
im

e
(m

s)

Elements (millions)

Dot product

Data.Vector
Repa -N8

NDP2GPU
Accelerate -fusion

... +fusion
CUBLAS

 1

 10

 100

 2 4 6 8 10 12 14 16 18 20

Ru
n

Ti
m

e
(m

s)

Options (millions)

Black-Scholes

Accelerate -sharing
... +sharing

CUDA

 0.1

 1

 10

 100

 1000

1k 2k 4k 8k 16k 32k

R
un

 T
im

e
(m

s)

Bodies

N-Body

Accelerate -fusion -sharing
... -fusion +sharing
... +fusion +sharing

CUDA

 0.1

 1

 10

 100

 1000

64k 256k 1M 4M 16M

Ru
n

Ti
m

e
(m

s)

Image Size (total pixels)

Canny Edge Detection

Accelerate (whole program)
Accelerate (just GPU kernels)

OpenCV (CPU)
OpenCV (GPU)

 1

 10

 100

 1000

 10000

8k 16k 32k 64k 128k 256k 512k 1M 2M

R
un

 T
im

e
(m

s)

Image Size (total pixels)

Fluid Flow

C sequential
Repa -N7

Accelerate -sharing
... +sharing

 1

 10

 100

 1000

 0.2 0.4 0.8 1.6

R
un

 T
im

e
(m

s)

Elements (millions)

Radix Sort

Accelerate -fusion -sharing
... -fusion +sharing
... +fusion +sharing

Thrust

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45 50

Sp
ee

du
p

vs
. R

ep
a

@
 1

 T
hr

ea
d

Threads

Black-Scholes

Repa
Accelerate (LLVM-CPU)

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40 45 50

Sp
ee

du
p

vs
. R

ep
a

@
 1

 T
hr

ea
d

Threads

Mandelbrot

Repa
Accelerate (LLVM-CPU)

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40 45 50

Sp
ee

du
p

vs
. R

ep
a

@
 1

 T
hr

ea
d

Threads

N-Body

Repa
Accelerate (LLVM-CPU)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45 50

Sp
ee

du
p

vs
. R

ep
a

@
 1

 T
hr

ea
d

Threads

Ray tracer

Repa
Accelerate (LLVM-CPU)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0 5 10 15 20 25 30 35 40 45 50

Sp
ee

du
p

vs
. H

as
hc

at
 @

 1
 T

hr
ea

d

Threads

MD5 hash

Hashcat
Accelerate (LLVM-CPU)

Delite/LMS [6, 38, 39] is a parallelisation framework for DSLs
in Scala that uses library-based multi-pass staging to specify com-
plex optimisations in a modular manner. Like Accelerate, Delite is
a modular system that supports multiple code generators and targets
CPU and GPU systems. Unlike Accelerate, its compiler pipeline is
not type preserving, and code generation is by pasting strings.

Vertigo [16], Nikola [29] and Obsidian [43] are EDSLs in
Haskell that generate GPU code. None of these systems preserves
source language types throughout the pipeline and none of them are
able to generate CPU and GPU code, or currently support multiple

backends. Moreover, Accelerate supports a significantly richer set
of types and computations.

References
[1] T. Altenkirch and B. Reus. Monadic Presentation of Lambda Terms

Using Generalised Inductive Types. In CSL ’99: Computer Science
Logic, pages 453–468, 1999.

[2] A. W. Appel. SSA is functional programming. ACM SIGPLAN
Notices, 33(4):17–20, 1998.

— DRAFT — DRAFT — DRAFT — DRAFT — 11 2015/5/30

