
NUMB:	  Exploi-ng	  Non-‐Uniform	  Memory	  Bandwidth	  	  
for	  Computa-onal	  Science	  

Mark	  Hill,	  E+ychios	  Sifakis,	  Michael	  Swi+	  and	  David	  Wood	  

Hardware	  Trends	  
•  Heterogeneous	  processors	  demand	  
mem.	  BW	  

•  Die	  stacking	  offers	  high	  memory	  
bandwidth	  to	  limited	  memory	  capacity	  

•  Non-‐uniform	  bandwidth	  between	  
memory	  within	  a	  stack	  and	  off-‐stack.	  	  	  

•  NV	  memory	  such	  as	  PCM,	  Memristors,	  
and	  STT-‐MRAM	  different	  than	  DRAM	  

Bandwidth	  Coordina-on	  

Experimental	  Results	  

Vision	  
	  	  

• Apply	  heterogeneous	  plaForms	  
to	  increase	  system	  capacity	  and	  
efficiency	  linearly	  

• SynergisKcally	  develop:	  
• Algorithmic	  and	  theore-cal	  
approaches	  to	  scale	  
applicaKons	  
• Opera-ng	  system	  extensions	  
• New	  hardware	  architectures	  

	  

•  Producer-‐consumer	  relaKonships	  pervade	  
computaKonal	  science	  applicaKons	  

•  Streams	  are	  inefficient	  use	  of	  caches	  
•  Data	  spills	  between	  stages	  reduces	  bandwidth	  
to	  that	  of	  lower	  levels	  of	  memory	  hierarchy	  

Preliminary	  results	  
•  Q-‐cache	  eliminates	  95%	  of	  cache	  spills	  in	  GPU	  

producer/CPU	  consumer	  communicaKon.	  

Proposed	  Solu-on:	  Q-‐cache	  
•  Adds	  a	  rate	  monitor	  to	  the	  cache	  coherence	  
protocol	  state	  at	  L2	  caches	  

•  Rate	  monitor	  observes	  producer/consumer	  
communicaKon	  rates	  

•  Boosts	  producer/throNles	  producer	  if	  
necessary	  for	  efficient	  cache	  usage	  

Fig. 3. Kmeans simulated and estimated (*) run times for various benchmark organizations.

II. MOTIVATING PRODUCER-CONSUMER SUPPORT
To motivate pipeline structure investigation, we begin with

a case study of the kmeans benchmark running in our sim-
ulation environment. Kmeans shows significant compute and
caching inefficiency due to the bulk-synchronous pipeline
structure, and up to 77% of run time can be recovered by re-
structuring the application to run on a heterogeneous processor.
The optimizations tested here on kmeans have widely varying
potential benefits for other benchmarks and input sets, but
further results show they are broadly applicable optimization
targets for heterogeneous processors.

A. Example Kmeans Benchmark
From the Rodinia benchmark suite, the kmeans benchmark

iteratively analyzes a set of n-dimensional points to find the
k points that characterize clusters of the points. Each iteration
involves calculating the distance between each of the points
and the current k centers, assigning each point to the closest
center, and then replacing poor centers with new candidate
centers. Distance calculations and center assignments have
wide thread-level parallelism (TLP) and so are performed on
the GPU. The center replacement algorithm has limited TLP,
so assigned centers are copied back from the GPU memory to
perform the center adjustment on the CPU.

Baseline: When using copies in the discrete GPU setting,
kmeans serializes nearly all of the work and copies. Run time
component activity is depicted in Figure 3 as “Baseline”.
Despite only transferring a small amount of data between CPU
and GPU memories in each iteration, over 50% of kmeans
run time is spent copying data. This is due to the asymmetry
of PCIe bandwidth (8GB/s) compared to the CPU and GPU
memory bandwidth (24 and 179GB/s), which allow the CPU
and GPU to process data substantially faster than a PCIe copy.

Bandwidth asymmetry in discrete GPU systems encourages
programmers to minimize data transfers often resulting in
wide, bulk-synchronous pipeline stages. For kmeans, the GPU
sits idle for a substantial portion of run time (82%) though the
GPU completes 95% of the compute operations, indicating that
kmeans incurs very high GPU FLOP opportunity cost1 for bulk
transferring work between CPU and GPU.

B. Optimizing Kmeans

There are a number of ways that application pipelines can
be restructured to improve performance. However, to date, little
analysis has compared different inefficiencies and opportunity
costs of optimizing GPU application structure for discrete
GPUs versus heterogeneous processors. For kmeans operating

1We refer to “FLOP opportunity cost” as the portion of compute FLOPs
that go unused due to a core being inactive

on this particular input set, the programmer’s incentive to opti-
mize increases substantially when running on a heterogeneous
processor. Specifically, removing memory copies provides a
2⇥ run time improvement, but 2⇥ more improvement can
come from further CPU-GPU parallelism and effective cache
management. It is difficult or impossible to employ these
optimizations in current discrete GPU systems.

Asynchronous Memory Copy Streams: In the discrete
GPU system, kmeans performance is hamstrung by the need to
copy data back and forth between CPU and GPU memories.
One option to reduce this overhead is to use kernel fission
and asynchronous streams [18, 29]. Kernel fission requires the
programmer to explicitly divide independent data and compute
chunks of a kernel into separate kernels that can be overlapped
with asynchronous memory copies. The “Asynchronous Copy”
bars of Figure 3 show the run time activity for a 3-wide
asynchronous stream organization.

While a non-trivial code transformation, kernel fission and
streams can improve kmeans run time by 37%. Memory copies
can be overlapped with CPU and GPU execution, though there
are data dependencies that the limit overlap. Despite the data
dependencies, kmeans run time could improve up to the point
that the PCIe link is saturated for the full execution.

Emerging unified virtual memory architectures exist that
allow coherent data synchronization between CPU and GPU
over the PCIe link. However, we expect that the latency
to perform these on-demand synchronizations will be too
prohibitive to allow data handling as efficiently as streams.
For kmeans, performance is likely to still bottleneck on copies,
because the total data copied would remain the same.

Eliminating Memory Copies: In Figure 3, the “No Mem-
ory Copy” bars show the CPU and GPU activity of kmeans
running on a cache-coherent heterogeneous processor without
the need for memory copies. Without the copies, run time can
improve over the baseline execution by nearly the total baseline
copy time, and GPU utilization improves from 18% to 39%.

Unfortunately, this organization is still quite core and
cache inefficient. First, this organization leaves either CPU
or GPU cores idle throughout the complete execution. In
terms of available compute operations, this organization incurs
an opportunity cost of nearly 60% unused FLOPs. Further,
this kmeans implementation was designed for a discrete GPU
and minimal copy overhead, which encouraged GPU kernel-
granularity synchronization. This residual structure results in
very inefficient use of cache. Each GPU kernel streams input
and output data, and the total size of this data exceeds the
size of cache, causing all produced data to spill off-chip before
they are consumed. This results in roughly 9.5% more memory
accesses than if these results could be passed in cache.

2

PlaForm	   CPU/Accelerator	   Mem.	  Size	   Mem.	  BW	   FLOPs	  
Phi	   2x10	  core	  Xeon	  

E5-‐2650	  @	  2.2GHz	  

6x	  Xeon	  Phi	  31S1P	  

128	  GB	  CPU	  
	  	  

48	  GB	  Phi	  

136	  GB/s	  CPU	  
	  

1.1	  TB/s	  Phi	  

730	  GFLOPs	  CPU	  
	  

12	  TFLOPs	  Phi	  
GPU	   1x	  6-‐core	  Xeon	  

E5-‐1650	  @	  3.5GHz	  

2x	  NVidia	  GTX	  
Titan	  X	  	  

64	  GB	  CPU	  
	  

24	  GB	  GPU	  

68	  GB/s	  CPU	  
	  

720	  GB/s	  GPU	  

330	  GFLOPS	  CPU	  
	  

6TFLOPs	  GPU	  

Image	  (c)	  AMD	  

Applica-on	  Needs	  
•  Computa-onal	  science	  needs	  capacity	  
and	  has	  parallelism.	  	  	  

•  Algorithms	  development	  and	  theory	  
can	  adapt	  to	  evolving	  plagorms.	  	  	  

•  Co-‐evolving	  plagorm,	  applicaKon,	  
algorithms,	  and	  theory	  enables	  	  
transformaKve	  opKmizaKons	  

Smoke	  flow	  
simulaKon	  on	  
adapKve,	  virtual-‐
memory	  assisted	  
grids.	  	  
	  

K-‐means	  	  es-mated	  run	  -mes	  for	  various	  organiza-ons	  

Adap-ng	  Applica-ons	  

Algorithmic	  Outcomes:	  
•  Heterogeneous	  linear	  complexity	  

algorithm,	  using	  divide-‐and-‐conquer	  
•  Uses	  Schur-‐Complement	  

precondi-oned	  Krylov	  solvers	  
•  P	  (=#	  accelerators)	  subdomains	  size	  

O(N/P),	  
•  Interface	  regions	  size	  O(N2/3).	  
•  Communica-on	  O(N2/3)	  in	  acc.	  mem	  
•  Communica-on	  O(N)	  in	  CPU	  mem	  

Design	  prac-ces:	  
•  Accelerator-‐specific	  opKmizaKons	  
•  Shared	  memory	  on	  GPU,	  	  
•  Virtual	  Memory	  on	  Xeon	  Phi	  

•  Unified	  best	  prac-ces	  reuse	  effort	  
across	  CPU	  and	  accelerators	  

Targeted	  applica-ons:	  
	  
•  Solving	  sparse	  large-‐scale	  systems	  of	  

Lu=f,	  L	  is	  a	  Laplace	  matrix	  
•  ComputaKonal	  dynamics	  
•  Physics-‐based	  modeling	  computer	  

animaKon	  and	  visual	  effects.	  	  
•  108-‐109	  degrees	  of	  freedom	  	  
•  10-‐100	  GB	  memory	  

Applica-on	  characteris-cs:	  
	  
•  Major	  task	  is	  solu-on	  of	  sparse	  linear	  

system.	  	  
•  Homogeneous	  algorithm	  is	  linear	  but	  

bad	  communicaKon/computaKon	  raKo	  
for	  accelerators	  

•  Distributed	  algorithms	  superlinear	  
•  Working	  set	  exceeds	  single	  accelerator	  

memory	  
•  Bandwidth-‐limited	  on	  CPU	  

Example	  applica-ons:	  
•  Smoke	  simulaKon	  in	  

shaped	  containers	  
•  Water	  flow	  simulaKon	  

around	  shaped	  objects	  
	  

0	  

5	  

10	  

15	  

20	  

25	  

30	  

35	  

40	  

540MB	   1.8GB	   4.3GB	   14GB	   33GB	   49GB	  

GPU	  -‐	  Hetero	  on	  CPU	  

GPU	  -‐	  CPU	  Only	  

Phi	  -‐	  Hetero	  on	  CPU	  

Phi	  -‐	  CPU	  Only	  

GPU	  -‐	  Heterogeneous	  

Phi	  -‐	  Heterogeneous	  

Ex
ec
uK

on
	  K
m
e	  
(s
)	  

Problem	  Size	  

Comparison:	  	  
•  CPU	  Only:	  Homogeneous	  algorithm	  on	  CPU	  
•  Hetero	  on	  CPU:	  Heterogeneous	  algorithm	  on	  CPU	  using	  MPI	  	  
•  Heterogeneous:	  Heterogeneous	  algorithm	  on	  CPU	  and	  accelerator	  

QuanKtaKve	  speedups	  
enable	  qualita-ve	  change:	  
Cluster	  ➔	  WorkstaKon	  
Batch	  ➔	  InteracKve	  

Near-‐Linear	  
Scaling	  with	  
problem	  size	  


