
NUMB:	
  Exploi-ng	
  Non-­‐Uniform	
  Memory	
  Bandwidth	
  	
  
for	
  Computa-onal	
  Science	
  

Mark	
  Hill,	
  E+ychios	
  Sifakis,	
  Michael	
  Swi+	
  and	
  David	
  Wood	
  

Hardware	
  Trends	
  
•  Heterogeneous	
  processors	
  demand	
  
mem.	
  BW	
  

•  Die	
  stacking	
  offers	
  high	
  memory	
  
bandwidth	
  to	
  limited	
  memory	
  capacity	
  

•  Non-­‐uniform	
  bandwidth	
  between	
  
memory	
  within	
  a	
  stack	
  and	
  off-­‐stack.	
  	
  	
  

•  NV	
  memory	
  such	
  as	
  PCM,	
  Memristors,	
  
and	
  STT-­‐MRAM	
  different	
  than	
  DRAM	
  

Bandwidth	
  Coordina-on	
  

Experimental	
  Results	
  

Vision	
  
	
  	
  

• Apply	
  heterogeneous	
  plaForms	
  
to	
  increase	
  system	
  capacity	
  and	
  
efficiency	
  linearly	
  

• SynergisKcally	
  develop:	
  
• Algorithmic	
  and	
  theore-cal	
  
approaches	
  to	
  scale	
  
applicaKons	
  
• Opera-ng	
  system	
  extensions	
  
• New	
  hardware	
  architectures	
  

	
  

•  Producer-­‐consumer	
  relaKonships	
  pervade	
  
computaKonal	
  science	
  applicaKons	
  

•  Streams	
  are	
  inefficient	
  use	
  of	
  caches	
  
•  Data	
  spills	
  between	
  stages	
  reduces	
  bandwidth	
  
to	
  that	
  of	
  lower	
  levels	
  of	
  memory	
  hierarchy	
  

Preliminary	
  results	
  
•  Q-­‐cache	
  eliminates	
  95%	
  of	
  cache	
  spills	
  in	
  GPU	
  

producer/CPU	
  consumer	
  communicaKon.	
  

Proposed	
  Solu-on:	
  Q-­‐cache	
  
•  Adds	
  a	
  rate	
  monitor	
  to	
  the	
  cache	
  coherence	
  
protocol	
  state	
  at	
  L2	
  caches	
  

•  Rate	
  monitor	
  observes	
  producer/consumer	
  
communicaKon	
  rates	
  

•  Boosts	
  producer/throNles	
  producer	
  if	
  
necessary	
  for	
  efficient	
  cache	
  usage	
  

Fig. 3. Kmeans simulated and estimated (*) run times for various benchmark organizations.

II. MOTIVATING PRODUCER-CONSUMER SUPPORT
To motivate pipeline structure investigation, we begin with

a case study of the kmeans benchmark running in our sim-
ulation environment. Kmeans shows significant compute and
caching inefficiency due to the bulk-synchronous pipeline
structure, and up to 77% of run time can be recovered by re-
structuring the application to run on a heterogeneous processor.
The optimizations tested here on kmeans have widely varying
potential benefits for other benchmarks and input sets, but
further results show they are broadly applicable optimization
targets for heterogeneous processors.

A. Example Kmeans Benchmark
From the Rodinia benchmark suite, the kmeans benchmark

iteratively analyzes a set of n-dimensional points to find the
k points that characterize clusters of the points. Each iteration
involves calculating the distance between each of the points
and the current k centers, assigning each point to the closest
center, and then replacing poor centers with new candidate
centers. Distance calculations and center assignments have
wide thread-level parallelism (TLP) and so are performed on
the GPU. The center replacement algorithm has limited TLP,
so assigned centers are copied back from the GPU memory to
perform the center adjustment on the CPU.

Baseline: When using copies in the discrete GPU setting,
kmeans serializes nearly all of the work and copies. Run time
component activity is depicted in Figure 3 as “Baseline”.
Despite only transferring a small amount of data between CPU
and GPU memories in each iteration, over 50% of kmeans
run time is spent copying data. This is due to the asymmetry
of PCIe bandwidth (8GB/s) compared to the CPU and GPU
memory bandwidth (24 and 179GB/s), which allow the CPU
and GPU to process data substantially faster than a PCIe copy.

Bandwidth asymmetry in discrete GPU systems encourages
programmers to minimize data transfers often resulting in
wide, bulk-synchronous pipeline stages. For kmeans, the GPU
sits idle for a substantial portion of run time (82%) though the
GPU completes 95% of the compute operations, indicating that
kmeans incurs very high GPU FLOP opportunity cost1 for bulk
transferring work between CPU and GPU.

B. Optimizing Kmeans

There are a number of ways that application pipelines can
be restructured to improve performance. However, to date, little
analysis has compared different inefficiencies and opportunity
costs of optimizing GPU application structure for discrete
GPUs versus heterogeneous processors. For kmeans operating

1We refer to “FLOP opportunity cost” as the portion of compute FLOPs
that go unused due to a core being inactive

on this particular input set, the programmer’s incentive to opti-
mize increases substantially when running on a heterogeneous
processor. Specifically, removing memory copies provides a
2⇥ run time improvement, but 2⇥ more improvement can
come from further CPU-GPU parallelism and effective cache
management. It is difficult or impossible to employ these
optimizations in current discrete GPU systems.

Asynchronous Memory Copy Streams: In the discrete
GPU system, kmeans performance is hamstrung by the need to
copy data back and forth between CPU and GPU memories.
One option to reduce this overhead is to use kernel fission
and asynchronous streams [18, 29]. Kernel fission requires the
programmer to explicitly divide independent data and compute
chunks of a kernel into separate kernels that can be overlapped
with asynchronous memory copies. The “Asynchronous Copy”
bars of Figure 3 show the run time activity for a 3-wide
asynchronous stream organization.

While a non-trivial code transformation, kernel fission and
streams can improve kmeans run time by 37%. Memory copies
can be overlapped with CPU and GPU execution, though there
are data dependencies that the limit overlap. Despite the data
dependencies, kmeans run time could improve up to the point
that the PCIe link is saturated for the full execution.

Emerging unified virtual memory architectures exist that
allow coherent data synchronization between CPU and GPU
over the PCIe link. However, we expect that the latency
to perform these on-demand synchronizations will be too
prohibitive to allow data handling as efficiently as streams.
For kmeans, performance is likely to still bottleneck on copies,
because the total data copied would remain the same.

Eliminating Memory Copies: In Figure 3, the “No Mem-
ory Copy” bars show the CPU and GPU activity of kmeans
running on a cache-coherent heterogeneous processor without
the need for memory copies. Without the copies, run time can
improve over the baseline execution by nearly the total baseline
copy time, and GPU utilization improves from 18% to 39%.

Unfortunately, this organization is still quite core and
cache inefficient. First, this organization leaves either CPU
or GPU cores idle throughout the complete execution. In
terms of available compute operations, this organization incurs
an opportunity cost of nearly 60% unused FLOPs. Further,
this kmeans implementation was designed for a discrete GPU
and minimal copy overhead, which encouraged GPU kernel-
granularity synchronization. This residual structure results in
very inefficient use of cache. Each GPU kernel streams input
and output data, and the total size of this data exceeds the
size of cache, causing all produced data to spill off-chip before
they are consumed. This results in roughly 9.5% more memory
accesses than if these results could be passed in cache.

2

PlaForm	
   CPU/Accelerator	
   Mem.	
  Size	
   Mem.	
  BW	
   FLOPs	
  
Phi	
   2x10	
  core	
  Xeon	
  

E5-­‐2650	
  @	
  2.2GHz	
  

6x	
  Xeon	
  Phi	
  31S1P	
  

128	
  GB	
  CPU	
  
	
  	
  

48	
  GB	
  Phi	
  

136	
  GB/s	
  CPU	
  
	
  

1.1	
  TB/s	
  Phi	
  

730	
  GFLOPs	
  CPU	
  
	
  

12	
  TFLOPs	
  Phi	
  
GPU	
   1x	
  6-­‐core	
  Xeon	
  

E5-­‐1650	
  @	
  3.5GHz	
  

2x	
  NVidia	
  GTX	
  
Titan	
  X	
  	
  

64	
  GB	
  CPU	
  
	
  

24	
  GB	
  GPU	
  

68	
  GB/s	
  CPU	
  
	
  

720	
  GB/s	
  GPU	
  

330	
  GFLOPS	
  CPU	
  
	
  

6TFLOPs	
  GPU	
  

Image	
  (c)	
  AMD	
  

Applica-on	
  Needs	
  
•  Computa-onal	
  science	
  needs	
  capacity	
  
and	
  has	
  parallelism.	
  	
  	
  

•  Algorithms	
  development	
  and	
  theory	
  
can	
  adapt	
  to	
  evolving	
  plagorms.	
  	
  	
  

•  Co-­‐evolving	
  plagorm,	
  applicaKon,	
  
algorithms,	
  and	
  theory	
  enables	
  	
  
transformaKve	
  opKmizaKons	
  

Smoke	
  flow	
  
simulaKon	
  on	
  
adapKve,	
  virtual-­‐
memory	
  assisted	
  
grids.	
  	
  
	
  

K-­‐means	
  	
  es-mated	
  run	
  -mes	
  for	
  various	
  organiza-ons	
  

Adap-ng	
  Applica-ons	
  

Algorithmic	
  Outcomes:	
  
•  Heterogeneous	
  linear	
  complexity	
  

algorithm,	
  using	
  divide-­‐and-­‐conquer	
  
•  Uses	
  Schur-­‐Complement	
  

precondi-oned	
  Krylov	
  solvers	
  
•  P	
  (=#	
  accelerators)	
  subdomains	
  size	
  

O(N/P),	
  
•  Interface	
  regions	
  size	
  O(N2/3).	
  
•  Communica-on	
  O(N2/3)	
  in	
  acc.	
  mem	
  
•  Communica-on	
  O(N)	
  in	
  CPU	
  mem	
  

Design	
  prac-ces:	
  
•  Accelerator-­‐specific	
  opKmizaKons	
  
•  Shared	
  memory	
  on	
  GPU,	
  	
  
•  Virtual	
  Memory	
  on	
  Xeon	
  Phi	
  

•  Unified	
  best	
  prac-ces	
  reuse	
  effort	
  
across	
  CPU	
  and	
  accelerators	
  

Targeted	
  applica-ons:	
  
	
  
•  Solving	
  sparse	
  large-­‐scale	
  systems	
  of	
  

Lu=f,	
  L	
  is	
  a	
  Laplace	
  matrix	
  
•  ComputaKonal	
  dynamics	
  
•  Physics-­‐based	
  modeling	
  computer	
  

animaKon	
  and	
  visual	
  effects.	
  	
  
•  108-­‐109	
  degrees	
  of	
  freedom	
  	
  
•  10-­‐100	
  GB	
  memory	
  

Applica-on	
  characteris-cs:	
  
	
  
•  Major	
  task	
  is	
  solu-on	
  of	
  sparse	
  linear	
  

system.	
  	
  
•  Homogeneous	
  algorithm	
  is	
  linear	
  but	
  

bad	
  communicaKon/computaKon	
  raKo	
  
for	
  accelerators	
  

•  Distributed	
  algorithms	
  superlinear	
  
•  Working	
  set	
  exceeds	
  single	
  accelerator	
  

memory	
  
•  Bandwidth-­‐limited	
  on	
  CPU	
  

Example	
  applica-ons:	
  
•  Smoke	
  simulaKon	
  in	
  

shaped	
  containers	
  
•  Water	
  flow	
  simulaKon	
  

around	
  shaped	
  objects	
  
	
  

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

35	
  

40	
  

540MB	
   1.8GB	
   4.3GB	
   14GB	
   33GB	
   49GB	
  

GPU	
  -­‐	
  Hetero	
  on	
  CPU	
  

GPU	
  -­‐	
  CPU	
  Only	
  

Phi	
  -­‐	
  Hetero	
  on	
  CPU	
  

Phi	
  -­‐	
  CPU	
  Only	
  

GPU	
  -­‐	
  Heterogeneous	
  

Phi	
  -­‐	
  Heterogeneous	
  

Ex
ec
uK

on
	
  K
m
e	
  
(s
)	
  

Problem	
  Size	
  

Comparison:	
  	
  
•  CPU	
  Only:	
  Homogeneous	
  algorithm	
  on	
  CPU	
  
•  Hetero	
  on	
  CPU:	
  Heterogeneous	
  algorithm	
  on	
  CPU	
  using	
  MPI	
  	
  
•  Heterogeneous:	
  Heterogeneous	
  algorithm	
  on	
  CPU	
  and	
  accelerator	
  

QuanKtaKve	
  speedups	
  
enable	
  qualita-ve	
  change:	
  
Cluster	
  ➔	
  WorkstaKon	
  
Batch	
  ➔	
  InteracKve	
  

Near-­‐Linear	
  
Scaling	
  with	
  
problem	
  size	
  


