
Motivation

Scientific Computing and Imaging Institute University of Utah
Brad Peterson, Harish Dasari, Nan Xiao, and Martin Berzins

Uintah Task Engine Optimizations for
GPU-Heterogeneous Architectures

The SCI Institute

To reduce time overhead of Uintah's runtime system,
and to better prepare Uintah for accelerator tasks.

● Some fast GPU tasks weren't efficiently managed.
● Either the PCIe bus was used too often.
● Or many GPU API calls were slower than computation.

● Creating a full task graph was also unoptimized.

Supporting short-lived GPU tasks

• This research utilized equipment donations to the University of Utah’s Intel Parallel
Computing Center at the SCI Institute.

• We wish the acknowledge the prior work and support from Alan Humphrey and Qingyu
Meng.

Supported By:

Faster task graph creations
•Before a simulation starts, and occasionally before any
timestep, a full task graph is created. This can be expensive
for large problems, on the order of hundreds of seconds!

•The previous approach used a BVH tree and organized data
through frequent (and sometimes duplicative) sorting.

•New data structures, such as a set of specialized hash trees,
were created. Sections of the mesh grid are organized more
compactly and structured according to their region.

• This allowed for faster data structure creation times and
faster queries. This ultimately led to observed reductions in
task graph creation times by up to 45%.

GPU tasks with many variables
•Too many API calls creates large overhead.
•For example, a single CUDA malloc can take longer than
computing some GPU task kernels.

•We allocated large GPU memory spaces to hold all variables,
instead of allocating one space per variable. Overhead
decreases between 1.27x and 2.00x observed.

Supporting a heterogeneous
mixture of tasks

•Data should stay resident in the GPU as long as possible.
•Many new halo/ghost cells scenarios for a heterogeneous mix
of tasks.

•Ghost cells can be sent to and from adjacent regions in host
memory, GPU memory, or off node.

Before New

A GPU task for the Wasatch component of Uintah requires dozens of computational
variables and processes in under 2 milliseconds. The figures above show a decrease
in Uintah overhead by allocating all variables into one contiguous memory space.

Results for GPU tasks
•For GPU tasks that compute within milliseconds and/or
tasks that require many variables, previously Uintah
framework overhead was the dominant factor.

This material is based on upon work
supported by the NSF XPS Award 1337135

This also means ghost cells can now be managed
in groups utilizing a pipeline of work queues.

This reduced overhead opens up broad families of
new tasks to obtain speedups utilizing Uintah's

heterogeneous runtime support.

Tasks:
● Can be CPU or accelerator tasks.
● Can run on many nodes and share halo/ghost cells.
● Will require between one to dozens of variables.
● Take between 1 ms to over 1 s to compute.

	Slide 1

