
ASC: Automatically Scalable Computation — A Bridge between Worlds
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$ time ./factor > out 
$ for ((i=0;i<10;i++)); do time ./factor > out; done 
$ time ./asc factor > out 
$ time ./asc -a 40013f -i 23068684 factor > out 
$ for ((i=0;i<10;i++)); do  
    time ./asc -a 40013f -i 23068684 factor.net factor > out; done 
$ ./asc factor.* > out.train &  sleep 30; kill %1 
./asc:main.c:233: batch training `factor.net' on `factor.train' ... 
$ time ./asc -a 40013f -i 23068684 factor.net factor  > out
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Figure 4: Components of DANA: an NN Table, a configuration cache, a register file, processing elements, and control logic

send its outputs. This information is stored in a PE Table
which maintains one a specific entry for each PE. Each cycle,
the control logic assigns another neuron in Core-1’s hidden
layer until no more free PEs are available. With our current
implementation of DANA, one PE is assigned per cycle due to
limited bandwidth between control logic and PEs. However,
the architecture could be enhanced to assign multiple PEs per
cycle.

After allocation, PEs operate independently of DANA’s
control logic. The PE Table keeps a record of from where
each PE’s inputs are sourced, where its outputs will be sent,
and what address it should request from the Configuration
Cache for its weights. PE inputs and outputs can be read
from or written to private IO Storage (for inputs and outputs
of the NN Function) or to registers in the Register File (for
intermediate values) as assigned by the control logic. In case
multiple PEs need to read inputs or weights or are ready to
output data, they use round robin arbitration to decide which
PE gets priority. After DANA’s control logic allocates the first
neuron to PE-1, PE-1 queries IO Storage for its two inputs
and the Configuration Cache for its two weights. When PE-1

receives both its inputs and weights, it begins executing. After
a multi-cycle processing operation, PE-1 sends its output to
the Register File because the neuron assigned to PE-1 is not
in the output layer.

As PE-1 is now unallocated, DANA’s control logic can as-
sign a new neuron in the NN to it. While PE-1 was processing
the first neuron in Core-1’s NN Function, DANA allocated
the remaining 3 neurons in its hidden layer to other, unallo-
cated PEs. Thereby, DANA’s control logic now assigns the
first and only neuron in the output layer of the example NN
to PE-1. After allocation, PE-1 monitors the Register File
and only generates a request to the Register File for its four
inputs (the outputs of the four neurons in the hidden layer)
once the registers it needs become valid. A PE knows that its
register inputs are valid because the Register File exposes the
validity of each register block to all PEs. PE-1 also queries
the Configuration Cache for its new set of weights. Upon
receiving these and completing its execution, PE-1 sends its
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Figure 5: Organization of a block with four elements. All input,
output, and weight data in DANA is exchanged as blocks.

output to IO Storage. The execution of the NN Function for
Core-1 is now complete. If DANA has received an ACCREAD

request while this NN was processing, packet control logic
will generate a response as soon as output data is valid. Oth-
erwise, control logic waits for an ACCREAD instruction that
requests the outputs for the TID of Core-1’s NN Function.
Packet control logic then returns data from IO Storage to the
requesting core. Once the output data has been reported back
to Core-1, that entry in the NN Table is invalidated and can
be reused for other NN Functions. The following sections
describe the underlying architectural components of DANA in
greater detail.

4.1. Block and Element Organization

DANA operates on wide groups of data, called blocks, com-
posed of multiple individual data elements, as shown in Fig-
ure 5. For our design space exploration, the element width is
fixed at 32-bits. The choice of block width affects all modules
that exchange data. For example, when a PE requests new
inputs, that PE is actually requesting a block from IO Storage
or the Register File. We made this design decision to reduce
requests by PEs for input and weight data. For the rest of this
discussion, we use a block width of four.

4.2. NN Table

The NN Table stores information about all in-flight NN Func-
tions. Each entry in the NN Table is broken down into status
bits, global NN Function information, and NN progress infor-
mation (see Figure 6). Status bits are, generally, modified by
various DANA modules. Global NN Function Information is
read from the Configuration Cache when computation begins
and NN Progress information is read from the Configuration
Cache or updated by control logic as computation progresses.

There are a total of seven Status Bits (see Figure 6). The
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We assume the existence of a small, efficiently computable 
set S of states, where S is repeatedly visited during a program 
execution. We let tmax be the maximum time between two visits to 
states in S during the computation, and we let lmax be the 
maximum length of a configuration in S. 

Generalizing the techniques of the C-S parallelization above,  we 
obtain a similar  relationship between the time and space used by 
our system when the assumptions above hold.    

 Result : If the function computing the configurations in S takes 
time linear in lmax  then the computation is in  
PARALLELTIME (O(log(|S|)+(tmax)(lmax)). 

Corollary:  If the function computing the configurations in S takes 
constant time then the computation is in  
PARALLELTIME (O(log(|S|)+tmax). 

Result:  PARALLELTIME(S) ⊆ 
DPACE(S2)⊆PARALLELSPACE(S2) 

CONSTRUCTION 

Phase 1: fork S times 
in parallel to obtain 2S 
threads/sequential 
machine 
configurations/
addresses 
Phase 2: simulate 
sequential machine for 
1 step to obtain 
successor’s address 

Phase 3: for S 
iterations replace 
successor's address 
with successor's 
successor address 

Conclusion: each state 
either has a pointer to 
a halting state or the 
sequential machine 
doesn't halt from this 
state

Chandra-Stockmeyer Parallelization (1976) 

Extension of C-S Parallelization 
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