ASC: Automatically Scalable Computation — A Bridge between Worlds

Sequential Execution
Simple Programming

Deterministic

Frequency and Space Limited

A 4

Scalable Technologies
Massive Multi-cores Probabilistic

Sub-threshold

Neural Network Accelerators

System

Execution : learning, recall,
speculation and caching

/ (inteD
Xeop
P'Dcesgor

[(intel /| (inteD | (intel | (intel
Xeop: Xeop: Xeop: Xeop:
essor Processe, essor essor

/ 1 1
] 1
/ 1
4 1
é 1
é 1
’
; :
1
/ 1
’ |
1
1
1
1
1
\
! /
\
1 W

1 | \
1 1 1
1 1 \
| 1 1
1 1 \
1 1 \
1 1 1
1 1 1
1 1 \
[} 1 \
1 1 1
1 1 \
| 1 \
1 1 L
1 1 1
1 \
1
1
|
|
1
1 |
1 .
1
1
1
1

Did anybo\x
start from he

Did anybody
Did anybody start from here?
start from here?

@

observed trajectory {x(¥,x™M ... x)y

State Vector Trace from execution of program P [(2) original learning problem
|

0 |' progr
P T

I
\location of PC
PC hyperplane h

possible future state x(t+d)

UONIIXd

Trace of intersections with h

Condensed intersections with h’
t{ l(c) hyperplane intersections

3 Layer Perceptron Network for P at h’ predictive probability p(x(+9)[z(*), 6)

Q O ») -:" ;/(0 UL 0’0

DY //’;@% V//;*.;_Il\‘
\ \Q/ ! / " .“ \'
\Vl N sweE

Predictions of the next intersection with h’

Il A I

(d) new learning problem P

time ./factor > out
for ((1=0;1<10;1++)); do time ./factor > out; done
time ./asc factor > out
time ./asc -a 40013f -1 23068684 factor > out
for ((1=0;1<10;1++)); do
time ./asc -a 40013f -1 23068684 factor.net factor > out; done
$./asc factor.* > out.train & sleep 30; kill %1

./asc:main.c:233: batch training factor.net' on factor.train' ...
$ time ./asc -a 40013f -i 23068684 factor.net factor > out

O . - S
gl Joo0ooq
3 37.853s (29.4%)t

/9kB Net File

O

20

Theory

m-bit binary state vector s
(registers + ram + |/O channels)

execute

lookup

=== $0S5152¢0085i-1SiSi+l ees Spr===" > Memory, Neural
trace of execution

Predicted*

Cache of Predictive §t2tfs_ _
state pairs | State\ Execution
Pairs

[

Learning System
(eg. Associative

Network, Deep
Network)

Chandra-Stockmeyer Parallelization (1976)

fork

fork

Stimes

A

25 possible states

CONSTRUCTION

Phase 1: fork S times
in parallel to obtain 2°
threads/sequential
machine
configurations/
addresses

Phase 2: simulate

Compute -
1 step

zﬁ

22
Stimes - -

:28

Result: PARALLELTIME(S) ¢

DPACE(S?)cPARALLELSPACE(S?)

.21

 sequential machine for
1 step to obtain
® successor’s address

Phase 3: for S
iterations replace
successor's address
with successor's
successor address

Conclusion: each state
either has a pointer to
a halting state or the
sequential machine
doesn't halt from this
state

Extension of C-S Parallelization

We assume the existence of a small, efficiently computable
set S of states, where S is repeatedly visited during a program
execution. We let tmax be the maximum time between two visits to
states in S during the computation, and we let Inax be the
maximum length of a configuration in S.

Generalizing the techniques of the C-S parallelization above, we
obtain a similar relationship between the time and space used by
our system when the assumptions above hold.

Result : If the function computing the configurations in S takes
time linear in Imax then the computation is in
PARALLELTIME (O(log(|S]|)+(tmax)(Imax)).

Corollary: If the function computing the configurations in S takes
constant time then the computation is in

PARALLELTIME (O(log(|S|)*tmax).

erure) @ Jonathan Appavoo, Steve Homer, Ajay Joshi
SanzEsieRdl Tommy Unger, Tomislav Petrovic, Schuyler Eldridge

Program

r

Compiler

Aleoueiss)

SOURCE

BINARY

N\

GEED GE» GE GED GED GED aGE» -G GEED GED GED GED GED GED GED TaEED Ty

Generates Hints that can reduce the ASC

list of candidate PC for hyperplanes, map
of Read before Write address, candidates

I
l
l
learning and speculation challenges. Eg. |
|
|
|

for approximation, etc.

HELIX-UP: the Unleashed Parallelizer

('« HELIX: automatic code parallelizer
e HELIX limitations due its conservativeness

* Performance saturates at 4 cores

* Inconsistent performance across architectures
_ * Sensitive to dependence analysis accuracy

~

/

No output distortion

Baseline performance

-

/"« HELIX-UP allows users to trade output)
distortion to remove HELIX’s limitations
* |t reduces conservativeness to gain performance

Max output

Max performance /

distortion

HELIX and its limitations

Speedup 4 cores

1
E—' +1% deps 11.19
+2% deps 1.61

Nehalem

2.77

Bulldozer - 2.31

Haswell

Thread O, lteration 0
Thread 1 iﬂData Iteration 1
Threac 2 mata ’
Threac 3 KData

HELIX performance:

* Lower than we would like
* Inconsistent across architectures
* Sensitive to dependence analysis accuracy

read 3!

Thread O_\ lteration0 |
Thread 1 g5 [teration 1 ;
Thread 2 \Data i
- s |
T CPeta |

“ - |
— -
I

HELIX-UP performance:

Scale with number of cores

1.68

Speedup 4 cores

+1% deps
+2% deps

Nehalem

Haswell

]

Bulldozer - U.9

Compiler + runtime selectively
remove unlikely dependences

Consistent across architectures
Insensitive to dependence analysis accuracy

No output distortion /
Baseline performance

Margo Seltzer, Ryan P. Adams, David Brooks
Amos Waterland, Yu (Emma) Wang

Max output distortion
Max performance

Hardware

Dynamically Allocated Neural Network
Accelerator (DANA)

;/7 R Entry-1 . .
O O O - Entry-2 <> | Register File
Entry-3
/ e~ T [y terer e
N EERN o RN ¢ Entry=2
/ e ~ Entry=3
nnFunction(tid, nnid, inpytx) Control - Entry—4
accwrite(tid, nnid)
accwrite(tid, input[1
accwrite(tid, inputs[2/) '
\ _ecoreadeio [Coigrtion Coche TobTe) Y
— / Entry—] Cache Storage
/ Entry-2 Cache Storage
Core1 |Core= Private Storage Entry-1 Entry-3 Cache Storage
Private Storage Entry-2 Entry-4 Cache Storage
DANA
= il A
Core-3 4 <<Fo/from Cores
to/from Mem
> -€

FPGA DANA
Prototype

Can store and
evaluate software
defined neural
networks

ASC + DANA
Prototype

To our knowledge
first use of
neuromorphic
hardware to
transparently
accelerate a
deterministic
computation —
binary

=

SR .

q
4
0

c;. E 1 ';\’
&@‘\i'l;' \
S NMSIY
/ N\, A h \

