ASC: Automatically Scalable Computation — A Bridge between Worlds
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(d) new learning problem P

time ./factor > out
for ((1=0;1<10;1++)); do time ./factor > out; done
time ./asc factor > out
time ./asc -a 40013f -1 23068684 factor > out
for ((1=0;1<10;1++)); do
time ./asc -a 40013f -1 23068684 factor.net factor > out; done
$ ./asc factor.* > out.train & sleep 30; kill %1

./asc:main.c:233: batch training factor.net' on factor.train' ...
$ time ./asc -a 40013f -i 23068684 factor.net factor > out
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Chandra-Stockmeyer Parallelization (1976)
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Phase 1: fork S times
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 sequential machine for
1 step to obtain
® successor’s address

Phase 3: for S
iterations replace
successor's address
with successor's
successor address

Conclusion: each state
either has a pointer to
a halting state or the
sequential machine
doesn't halt from this
state

Extension of C-S Parallelization

We assume the existence of a small, efficiently computable
set S of states, where S is repeatedly visited during a program
execution. We let tmax be the maximum time between two visits to
states in S during the computation, and we let Inax be the
maximum length of a configuration in S.

Generalizing the techniques of the C-S parallelization above, we
obtain a similar relationship between the time and space used by
our system when the assumptions above hold.

Result : If the function computing the configurations in S takes
time linear in Imax then the computation is in
PARALLELTIME (O(log(|S]|)+(tmax)(Imax)).

Corollary: If the function computing the configurations in S takes
constant time then the computation is in

PARALLELTIME (O(log(|S|)*tmax).
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HELIX-UP: the Unleashed Parallelizer

('« HELIX: automatic code parallelizer
e HELIX limitations due its conservativeness

* Performance saturates at 4 cores

* Inconsistent performance across architectures
\_ * Sensitive to dependence analysis accuracy
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/"« HELIX-UP allows users to trade output )
distortion to remove HELIX’s limitations
* |t reduces conservativeness to gain performance
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HELIX and its limitations
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HELIX performance:

* Lower than we would like
* Inconsistent across architectures
* Sensitive to dependence analysis accuracy
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HELIX-UP performance:

Scale with number of cores
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Dynamically Allocated Neural Network
Accelerator (DANA)
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FPGA DANA
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Can store and
evaluate software
defined neural
networks

ASC + DANA
Prototype

To our knowledge
first use of
neuromorphic
hardware to
transparently
accelerate a
deterministic
computation —
binary
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