

LigHTS: Lagging Hardware Tolerant Systems

Haryadi Gunawi and Andrew Chien

(1) Limpware

Limpware

Definition: Hardware whose performance degrades significantly compared to its specs (a lagging hardware).

Anecdotal Impacts:

"... I Gb NIC card on a machine that suddenly starts transmitting at | Kbps, making the performance of entire workload for a 100 node cluster was crawling at a snail's pace" – Facebook engineers.

A destructive failure mode:

- Cascading failures (entire cluster collapse)
- No "fail in place" recovery

Our findings

Current cloud systems are susceptible to limpware.

A single piece of limpware can cause severe impact on a whole cluster [SoCC '13].

System	Operation	Node	Cluster
Hadoop	×	*	*
HDFS	*	*	*
ZooKeeper	*	*	*
Cassandra			
HBase	*	*	

... even Hadoop speculative execution is not triggered!

Limpware-Intolerant Designs

Problems:

Mappers

Single point of performance failure

Reducers

In-memory

meta reads

Current work:

Pre-deployment Detection of Performance Bugs [HotCloud '15]

- Challenge: Various deployment scenarios such as data locality, data source, job characteristic, job/load size, fault type/placement/granularity/ timing, topology scenario, etc.
- Solution: Convert (automatically) complex system code to formal model (CPN). Model check various deployment scenarios

Path-Informed Recovery

- Challenge: Limpware is not like fail-stop. Protocol callpath is deep (touches many hardware). Today's recovery sometimes cannot pinpoint the limpware.
- Solution: Ensure multi-layer systems manage paths. Recovery should not take the same slow path.

(2) The Tail at Store

Large-scale Study of Storage **Performance Variability**

- Study of over 450,000 disks, 4000 SSDs, and 240 virtual drives in deployment.
- More than 800 million drive hours analyzed.
- (Collaboration with Gokul Soundararajan and Deepak Kenchammana of NetApp)

	Disk	SSD	Virtual
RAID groups	38,029	572	42
Data drives per group	3-26	3-22	3-23
Data drives	458,482	4,069	242
Slow drives (§3.3.4)	118,149	1,195	229
Duration (days)	1-1470	1-94	1-230
Drive hours	857,183,442	7,481,055	211,032
Slow drive hours (§3.3.1)	1,885,804	43,016	37,327
Slow drive hours (%)	0.22%	0.58%	17.7%
RAID hours	72,046,373	1,072,690	56,080
Slow RAID hours (§3.3.2)	1,109,514	23,964	31,230
Slow RAID hours (%)	1.54%	2.23%	55.7%

© 2015 NetApp, Inc. All rights reserved.

Label	Definition		
\overline{N}	Number of data drives in a RAID group		
D_i	Drive number within a RAID group; $i = 1N$		
L_i	Hourly average I/O latency observed at D_i		
L_{med}	Median latency; $L_{med} = Median \ of(L_{1N})$		
S_i	Latency slowdown of D_i compared to the median;		
	$S_i = L_i/L_{med}$		
T^k	The k -th largest slowdown (" k -th longest tail");		
	$T^{1} = Max \ of \ (S_{1N}),$		
	$T^2 = 2nd \ Max \ of \ (S_{1N})$, and so on		
Stable	A drive is stable if $S_i < 2$		
Slow	A drive is slow if $S_i \geq 2$		

. . .

L₂

L1

LN

Results

- 0.22% disk, 0.58% SSD and 17.7% vdrive hours experience > 2x slowdown
- 26% disks, 29% SSDs and 98% vdrives have experienced at least one slow hour in their lifetimes
- 40%, 35% and 55% of slow disks, SSDs, and virtual drives will stay slow within the next hour
- 2-digit slowdowns had occurred in 0.01% of disk and SSD hours, 4- and 3-digit slowdowns in 124 and 2461 disk hours, and 3-digit SSD slowdowns in 10 SSD hours

