
MODEL-BASED, EVENT-DRIVEN SCALABLE

PROGRAMMING FOR THE MOBILE CLOUD

Gul Agha (PI), Darko Marinov (co-PI), Karl Palmskog (postdoc)

University of Illinois at Urbana-Champaign

Daniel Jackson (co-PI), Ivan Kuraj (PhD student)

Massachusetts Institute of Technology

Supported by

Objectives

•Support mobile applications integrated with cloud computing.

•Current mobile cloud application development frameworks com-

plicate user-level code.

•Our Goal: develop a framework to build mobile cloud applications.

The framework will:

–simplify user-level code specification (Sunny Programming

Framework); and

– faciliate mobility and scalability (Actor implementation).

Actors for Scalability

thread

procedures

state

mailbox

thread

procedures

state

mailbox

thread

procedures

state

mailbox

outgoing messages

incoming messages

•Decentralized control, state encapsulation, location transparency,

and mobility make actors suitable for implementing scalable sys-

tems.

•Example Actor Systems: LinkedIn, Twitter, Facebook Chat

“...the actor model has worked really well for us, and we wouldn’t

have been able to pull that off in C++ or Java.”

–Facebook Engineering

Cloud-based Web Programming Simplified

Developing web applications such as chat using Sunny requires

only defining a data model (records) and client-server interactions

(events):

record Room {

name: String,

members: set User,

msgs: set Msg

}

record Msg {

text: String,

time: Timestamp,

sender: User

}

event JoinRoom(r: Room,u: User)

on (not u in r.members) {

r.members += u

}

event SendMsg(r: Room,m: Msg)

on (m.sender in r.members) {

r.msgs += m

}

Events can be augmented by security policies to prevent unautho-

rized data access, represented at runtime with low overhead.

Approach

The application data model is decomposed, and its set of events split

in a controllable way among services that are units of concurrency.

Example chat application:

Service 1

Room 1

Msg Msg

· · ·

Client

Service n

Room n

Msg

SendMsg(..) JoinRoom(..)

Development and deployment concerns are separated into levels:

Records + Events User Level

Services Architecture Level

Cloud-based Actors Runtime Level

Mapping

Compilation

Application Scalability

•Data model decomposition allows for scalable data storage.

•Events represented as client/server message exchanges at runtime.

•Concurrency and communication abstracted from app programmer.

•Distributing event processing among services represented as mo-

bile actors allows scaling event throughput horizontally by adding

more cloud servers.

•Mapping to services and compilation to actors enables trading

availability for consistency.

•Strategies for actor placement on cloud servers to minimize com-

munication can be inferred by observing communication patterns.

Current and Future Work

•Formalization of mapping to actors.

•Framework implementation.

•Evaluation of scalability for representative web applications.

•Tool support for modelling, testing and verification.


