
• ddd
• cdd

Challenges of HPC Software Debugging Include

•Heterogeneity: hardware (CPUs, GPUs, …)
•Extreme scale: number of threads/cores
• Rapid evolution: new CPUs/GPUs/libraries
• Reality: High manual effort to annotate code
• Reality: No tools that collect enough debugging

information per large-scale run with low
overhead (Service Units or Core Hours get
exhausted, precluding “second run”)

Objectives Prior Work (exemplars) Ongoing Work
Merit, Impact,
Milestones, Students

 	 Nixing Scale Bugs in HPC
Saeed Taheri and Ganesh Gopalakrishnan (University of Utah, Salt Lake City, UT)
Sindhu Devale and Martin Burtscher (Texas State University, San Marcos, TX)
www.cs.utah.edu/fv/HybridDebugger

Collaborations with the following PIs and researchers is gratefully acknowledged: Hassan Rabeti (ILCS), Zvonimir Rakamaric’ (Debugging Methods). The CSTG example is from a paper authored with Berzins, Humphrey, de Oliviera, Meng, Rakamaric’ and Gopalakrishnan. ILCS images are from a paper authored by Burtscher and Rabeti (IPDPS’13).

Wish List

A tool for gathering information from HPC software that
maintains a history of events and their causal
relationships such that, upon failure
detection, one can query and navigate the history to
narrow down the likely cause of the bug.

Challenges in Realizing These Goals

• Scalability
• Detecting memory corruption (e.g., out of

bounds access) and data races requires
heavy-weight instrumentation

• Solution
• For now, focus on synchronization/control

bugs (deadlocks, livelocks)
• Higher degrees of scrutiny on relatively

newer pieces of code

• Handling Heterogeneity
• Tracking control-flow / happens-before

across different types of execution
hardware has not been addressed before

• Solution
• Develop synchronization action collection

methods across CPUs, GPUs, and code
written under different concurrency
models

XPS Exploratory Award CCF 1438963, 1439002

Nondeterminism+due+to+Unini.alized+Variable+
(Poisson2+Example)+

Commercial Debuggers

• Very good at detailed trace collection
• Good at minutely examining execution state
• Poor at handling scale
• Little help toward identifying the root cause
• Little help bridging concurrency models

Research Lab Tools

• Stack trace collection based
• Often for MPI

• Progress tracking
• Often based on loop progress order

• Example : STAT, AutomaDeD,
Protometer (LLNL), Dynoptic (UW)

• Do not exploit behavioral differences

Use of Coalesced Stack Trace Graphs

• Proven useful in large code base
• Summarizes stack nests
• Does not handle heterogeneity
• While overhead is low, it was not focused

toward synchronizations across multiple
concurrency models

Example use of Coalesced Stack Trace Graphs in
detecting uninitialized variables in Uintah code
base (University of Utah; see LCPC 2014)

Case Study: ILCS

• A heterogeneous concurrent program called
 the Iterative Local Champion Search (ILCS) has
 been chosen

ILCS combines three flavors of concurrency

• MPI
• OpenMP
• GPU

Execution Flow of ILCS

A"Scalable"Heterogeneous"Paralleliza4on"Framework"for"Itera4ve"Local"Searches" 6"

ILCS master
thread starts

master forks a
worker per core

master forks a
handler per GPU

workers evaluate
seeds, record local opt

GPU workers evaluate
seeds, record local opt

handlers launch GPU
code, sleep, record result

master sporadically finds
global opt via MPI, sleeps

each node gets chunk
of 64-bit seed range

Largest Scale Tested

Other Case Studies Planned

• A Rigorous Global Optimizer for Floating-Point
 Precision Estimation

• Parallelized versions of a GPU Data Race Checker
• Using parallel execution frameworks to parallelize

 verification

Intellectual Advances, Broader Impact

• Ways to track “happens before” at scale
• Ways to mine the tracked information

 for finding the root causes of bugs
• Enabling science at scale

• Achieving Extreme Scale
 requires the use of powerful
 debugging tools

• An understanding of what information to
 collect, how collection scales, and how
 it facilitates debugging

• Effective utilization of HPC resources
• System heterogeneity is only bound to

 increase — impactful beyond HPC

Work in progress

Student Training

• Saeed Taheri, PhD
• Sindhu Devale, MS
• Kurstie Lenear (BS, graduated)

Anticipated Tools and Utilities

• Control tracing utilities for heterogeneous
 concurrency

• A graphical tool for querying collected
 control dependencies for debugging

3) Binary Instrumentation Methods for
 Heterogeneous Trace Collection

1) CPU GPU control tracing methods

2) CPU XeonPhi control tracing methods

http://www.cs.utah.edu/fv/HybridDebugger

