Let's Talk About Storage & Recovery Methods for Non-Volatile Memory Database Systems

Joy Arulraj (CMU), Andrew Pavlo (CMU), Subramanya R. Dulloor (Intel Labs)

Storage Engines for NVM

Non-Volatile Memory (NVM)

	DRAM	FLASH	DISK	NVM
Read Latency	1x	500 x	10 ⁵ x	2-4x
Write Latency	1x	5000 x	10 ⁵ x	2-8x
Persistence	×	✓	✓	✓
Byte-level access	✓	*	*	✓
Write endurance	✓	*	✓	*

- ❖ Goal: Optimizing DBMS storage engines for NVM
 - In-place updates (InP)
 - Copy-on-Write updates (CoW)
 - Log-structured updates (LOG)
- * NVM hardware emulator (Intel Labs)
 - Configure NVM load and store latency
 - Throttle memory bandwidth
 - File system and Allocator interfaces to NVM
- NVM-oriented optimizations
 - Non-volatile pointer primitive
 - Valid even after system restarts
 - Non-volatile data structures used for indices, logging
 - Built using an NVM-optimized memory allocator

DBMS Testbed Platform

- Pluggable storage engine architecture
 - Runs on NVM hardware emulator
 - NVM-only design, no volatile DRAM

ENGINE TYPE	TABLE STORAGE	LOGGING	EXAMPLE
In-Place Updates	✓	✓	VoltDB
Copy-on-Write Updates	✓	*	LMDB
Log-Structured Updates	*	✓	LevelDB

Evaluation Results

- NVM-aware design pays off
 - 2 5.5x higher throughput than traditional engines
 - 1.5 2x longer device lifetime
 - Smaller storage footprint on NVM
 - Almost instantaneous recovery
- System design principles
 - Non-volatile data structures are tricky
 - Need a system-level rethink to leverage NVM

Future Work

- Peloton @ CMU
 - Hybrid storage hierarchy (NVM + DRAM)
 - Designed for HTAP workloads
 - Real-time analytics and fast transactions
 - Mixed row and columnar store